题目:
题解:
- 动态规划
- 建立一个比原始矩阵维度多一的
dp[m+1][n+1]
数组,其中dp[i][j]
表示由“1”
构成的最大正方形的边长
- 状态转移方程:
dp[i][j]=min(dp[i-1][j],dp[i-1][j-1],dp[i][j-1])+1
- 可以看下图理解这个状态转移方程:
代码如下:
class Solution {
public:
//题解:动态规划,dp[i][j]表示由`1`构成的最大正方形的`边长`
int maximalSquare(vector<vector<char>>& matrix) {
if(matrix.size()==0)return 0;
int row=matrix.size(),col=matrix[0].size(),maxLen=0;
int dp[row+1][col+1];
memset(dp,0,sizeof(dp));
for(int i=1;i<=row;++i)
{
for(int j=1;j<=col;++j)
{
if(matrix[i-1][j-1]=='1')
{
dp[i][j]=min(min(dp[i-1][j],dp[i-1][j-1]),dp[i][j-1])+1;//取得正方形的边长
maxLen=max(maxLen,dp[i][j]);//更新最大长度
}
}
}
return maxLen*maxLen;
}
};