[dp]leetcode221:最大正方形(medium)

本文介绍了一种使用动态规划解决二维矩阵中寻找由字符'1'构成的最大正方形问题的方法。通过构建dp数组,利用状态转移方程dp[i][j]=min(dp[i-1][j],dp[i-1][j-1],dp[i][j-1])+1来迭代求解,最终返回最大正方形的面积。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:
在这里插入图片描述
题解:

  • 动态规划
  • 建立一个比原始矩阵维度多一的dp[m+1][n+1]数组,其中dp[i][j]表示由“1”构成的最大正方形的边长
  • 状态转移方程:dp[i][j]=min(dp[i-1][j],dp[i-1][j-1],dp[i][j-1])+1
  • 可以看下图理解这个状态转移方程:
    在这里插入图片描述

代码如下:

class Solution {
public:
    //题解:动态规划,dp[i][j]表示由`1`构成的最大正方形的`边长`
    int maximalSquare(vector<vector<char>>& matrix) {
        if(matrix.size()==0)return 0;
        int row=matrix.size(),col=matrix[0].size(),maxLen=0;
        int dp[row+1][col+1];
        memset(dp,0,sizeof(dp));
        for(int i=1;i<=row;++i)
        {
            for(int j=1;j<=col;++j)
            {
                if(matrix[i-1][j-1]=='1')
                {
                    dp[i][j]=min(min(dp[i-1][j],dp[i-1][j-1]),dp[i][j-1])+1;//取得正方形的边长
                    maxLen=max(maxLen,dp[i][j]);//更新最大长度
                }
            }
        }
        return maxLen*maxLen;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值