[dp]leetcode64:最小路径和(medium)

本文介绍了一种使用动态规划解决二维网格中从起点到终点的最小路径和问题的方法。通过定义状态方程dp[i][j]表示到达点[i,j]的最小路径和,并利用状态转移方程进行迭代计算,最终得到目标点的最小路径和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:
在这里插入图片描述
题解:

  • 本题是动态规划的经典好题,状态方程也比较简单。
  • dp[i][j]表示原点坐标达到点[i,j]的最小路径和权值,状态转移方程:dp[i][j]=min(dp[i][j-1],dp[i-1][j])+grid[i][j];

代码如下:

class Solution {
public:
    //题解:动态规划,dp[i][j]表示到达点[i,j]的最小路径和
    //注意这题不是贪心算法,因为这里取左上两点的最小值是全局最优的,不是局部最优的
    int minPathSum(vector<vector<int>>& grid) {
        int n=grid.size(),m=grid[0].size();
        int dp[n][m];
        memset(dp,0,sizeof(dp));
        dp[0][0]=grid[0][0];
        for(int i=1;i<n;++i){//处理第一列的路径权值和
            dp[i][0]=dp[i-1][0]+grid[i][0];
        }
        for(int i=1;i<m;++i){//处理第一行的路径权值和
            dp[0][i]=dp[0][i-1]+grid[0][i];
        }
        for(int i=1;i<n;++i){//处理除去边界的路径权值和
            for(int j=1;j<m;++j){
                dp[i][j]=min(dp[i][j-1],dp[i-1][j])+grid[i][j];
            }
        }
        return dp[n-1][m-1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值