[dp]leetcode198:打家劫舍(easy)

本文详细解析了房屋抢劫问题的两种算法解决方案:一种是通过交替更新两个变量实现的简洁解法;另一种是经典的动态规划解法,利用状态转移方程dp[i]=max(dp[i-1], dp[i-2]+nums[i-1])来计算房间i可盗窃的最大金额数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:
在这里插入图片描述
题解:

  • 题解1:关于题解1的代码若理解起来确实比较困难的话,倒不如直接看题解2的动态规划解法,因为题解1的做法跟dp做法一样的,只是没有用dp数组来保存每个状态i的值,而是每次都更新sum0和sum1,确定sum0或sum1要么为房间i-1房屋可盗窃的最大值,要么就是i-2房屋可盗窃的最大值加上当前房屋的值num[i]。

  • 题解2:动态规划
  • dp[i]表示房间i获得最大金额数。
  • 状态转移方程dp[i]=max(dp[i-1],dp[i-2]+nums[i-1]);表示:在房间i可盗窃的最大值,要么就是i-1房屋可盗窃的最大值,要么就是i-2房屋可盗窃的最大值加上当前房屋的值,二者之间取最大值。

代码如下:

class Solution {
public:
    //思路1:sum0对奇数项求和,sum1对偶数项求和,注意在每次求和之后,需要更新为sum0和sum1中的较大值
    int rob_1(vector<int>& nums) {
        if(nums.empty())return 0;
        int sum0=0,sum1=0;
        for(int i=0;i<nums.size();++i){
            if(i%2==0){
                sum0+=nums[i];
//房间i的最大值要么是sum0的值(房间i-2的最大值+当前房间的值nums[i]),要么是sum1的值(房间i-1的最大值),二者取较大值即可
                sum0=max(sum0,sum1);
            }
            else{
                sum1+=nums[i];
//房间i的最大值要么是sum0的值(房间i-2的最大值+当前房间的值nums[i]),要么是sum1的值(房间i-1的最大值),二者取较大值即可                           sum1=max(sum0,sum1);
            }
        }
        //最后一次返回sum0和sum1中的较大值
        return max(sum0,sum1);
    }

    //题解2:动态规划,与上面思路一样的,不过换为动态规划更好理解
    int rob(vector<int>& nums){
        if(nums.empty())return 0;
        int n=nums.size(),dp[n+1];
        memset(dp,0,sizeof(dp));
        dp[1]=nums[0];
        for(int i=2;i<=n;++i){
            //在房间i可盗窃的最大值,要么就是i-1房屋可盗窃的最大值,要么就是i-2房屋可盗窃的最大值加上当前房屋的值,二者之间取最大值
            dp[i]=max(dp[i-1],dp[i-2]+nums[i-1]);
        }
        return dp[n];//返回房间n偷到的最大金额数
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值