题目:
题解:
- 本题属于300. 最长上升子序列的子题,难点在于如何处理
envelopes
数组?解决方法当然是排序了,然而这个排序还是比较难想的,我讲一下把。- 排序:排序的主要作用是降维,将二维数组转换为一维数组,然后进行寻找最长上升子序列。
- 1)若w不相同,则按w由小到大进行排序。这样做的好处是:由于w由小到大进行排序了,那么只有h是上升的才能构成上升的子序列(即w已经可套娃了,判断h是否可套娃即可)。比如
[1,1]、[2,0]、[3,1]、[4,2]
,降维之后的数组为[1,0,1,2]
,这里可套娃的子序列有[1,1]、[4,2]
对应[1,2]
,还有[2,0]、[3,1]、[4,2]
对应[0,1,2]
等。- 2)若w相同,则按h由大到小排序进行排序。这样做的好处是:由于w相等,那么只有h由大到小排序才不会计算重复的子序列(即w相等,只有h由大到小排序才不会重复计算套娃信封)。比如
[3,4]、[4,6]、[4,7]
,若按h由小到大排序降维之后的数组为[4,6,7]
,这样形成的可套娃的信封长度为3,这个是不正确的,因为只有(w2>w1,h2>h1)
才能进行套娃。若我们按h由大到小排序之后降维之后的数组为[4,7,6]
,这样可形成两个长度为2的可套娃子序列[3,4]、[4,7]
和[3,4]、[4,6]
,这样便满足条件了。
代码如下:
class Solution {
public:
//题解1:动态规划,时间复杂度O(n^2),空间复杂度O(n)
int maxEnvelopes_1(vector<vector<int>>& envelopes) {
if(envelopes.empty())return 0;
//先按w排序,若w相同,则按h由高到低排序;若w不同,则按w由小到大排序
sort(envelopes.begin(),envelopes.end(),[](const vector<int>& a,const vector<int>& b){
return a[0]<b[0]||(a[0]==b[0]&&a[1]>b[1]);
});
int n=envelopes.size(),res=0;
vector<int> dp(n,1);
for(int i=0;i<n;++i){
for(int j=0;j<i;++j){
if(envelopes[j][1]<envelopes[i][1]){
dp[i]=max(dp[i],dp[j]+1);
}
}
res=max(res,dp[i]);
}
return res;
}
//优化:动态规划+二分法,时间复杂度O(nlogn),空间复杂度O(n)
int maxEnvelopes(vector<vector<int>>& envelopes){
if(envelopes.empty())return 0;
sort(envelopes.begin(),envelopes.end(),[](const auto& a,const auto& b){
return a[0]<b[0]||(a[0]==b[0]&&a[1]>b[1]);
});
vector<int> dp;
for(auto& en:envelopes){
int idx=lower_bound(dp.begin(),dp.end(),en[1])-dp.begin();
if(idx>=dp.size()){
dp.emplace_back(en[1]);
}
else{
dp[idx]=en[1];
}
}
return dp.size();
}
};