[dp]leetcode354:俄罗斯套娃信封问题(hard)

本文深入探讨了信封套娃问题,通过巧妙的排序策略将二维数组转换为一维,利用动态规划求解最长上升子序列。文章详细解释了排序逻辑,并提供了两种算法实现,一种是O(n^2)的动态规划,另一种是优化后的O(nlogn)算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:
在这里插入图片描述
题解:

  • 本题属于300. 最长上升子序列的子题,难点在于如何处理envelopes数组?解决方法当然是排序了,然而这个排序还是比较难想的,我讲一下把。
  • 排序:排序的主要作用是降维,将二维数组转换为一维数组,然后进行寻找最长上升子序列。
  • 1)若w不相同,则按w由小到大进行排序。这样做的好处是:由于w由小到大进行排序了,那么只有h是上升的才能构成上升的子序列(即w已经可套娃了,判断h是否可套娃即可)。比如[1,1]、[2,0]、[3,1]、[4,2],降维之后的数组为[1,0,1,2],这里可套娃的子序列有[1,1]、[4,2]对应[1,2],还有[2,0]、[3,1]、[4,2]对应[0,1,2]等。
  • 2)若w相同,则按h由大到小排序进行排序。这样做的好处是:由于w相等,那么只有h由大到小排序才不会计算重复的子序列(即w相等,只有h由大到小排序才不会重复计算套娃信封)。比如[3,4]、[4,6]、[4,7],若按h由小到大排序降维之后的数组为[4,6,7],这样形成的可套娃的信封长度为3,这个是不正确的,因为只有(w2>w1,h2>h1)才能进行套娃。若我们按h由大到小排序之后降维之后的数组为[4,7,6],这样可形成两个长度为2的可套娃子序列[3,4]、[4,7][3,4]、[4,6],这样便满足条件了。

代码如下:

class Solution {
public:
    //题解1:动态规划,时间复杂度O(n^2),空间复杂度O(n)
    int maxEnvelopes_1(vector<vector<int>>& envelopes) {
        if(envelopes.empty())return 0;
        //先按w排序,若w相同,则按h由高到低排序;若w不同,则按w由小到大排序
        sort(envelopes.begin(),envelopes.end(),[](const vector<int>& a,const vector<int>& b){
            return a[0]<b[0]||(a[0]==b[0]&&a[1]>b[1]);
        });
        int n=envelopes.size(),res=0;
        vector<int> dp(n,1);
        for(int i=0;i<n;++i){
            for(int j=0;j<i;++j){
                if(envelopes[j][1]<envelopes[i][1]){
                    dp[i]=max(dp[i],dp[j]+1);
                }
            }
            res=max(res,dp[i]);
        }
        return res;
    }

    //优化:动态规划+二分法,时间复杂度O(nlogn),空间复杂度O(n)
    int maxEnvelopes(vector<vector<int>>& envelopes){
        if(envelopes.empty())return 0;
        sort(envelopes.begin(),envelopes.end(),[](const auto& a,const auto& b){
            return a[0]<b[0]||(a[0]==b[0]&&a[1]>b[1]);
        });
        vector<int> dp;
        for(auto& en:envelopes){
            int idx=lower_bound(dp.begin(),dp.end(),en[1])-dp.begin();
            if(idx>=dp.size()){
                dp.emplace_back(en[1]);
            }
            else{
                dp[idx]=en[1];
            }
        }
        return dp.size();
    }
};
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值