[LIS]leetcode1218:最长定差子序列(medium)

该博客介绍了如何利用动态规划(DP)求解最长等差子序列问题。通过状态表示和状态转移方程,代码展示了一个高效的方法来找到给定数组中等差子序列的最大长度。此算法适用于解决数列的优化问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:
在这里插入图片描述


题解:

思路:线性 dp


代码如下:

class Solution {
public:
    // LIS 模型
    int longestSubsequence(vector<int>& a, int diff) {
        // 用 hashmap 来记录状态,f[i]表示以数字i结尾的等差子序列的长度
        unordered_map<int,int> f;
        int res=0;
        for(int x:a){
            // 状态转移:f[x]只能由它的上一个状态f[x-diff]推出来,而且这个f[x-diff]为上一个状态的最长长度
            // 若f[x-diff]不存在,即为0,这样f[x]=1表示以数字x结尾的等差子序列的长度为1
            f[x]=max(f[x],f[x-diff]+1);
            res=max(res,f[x]);
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值