前言:
记录 tf 学习笔记,供以后复习查看。
文章目录
本节内容:
讲解神经网络的计算过程,搭建出第一个神经网络模型。
- 准备数据:采用大量“特征/标签”数据
- 搭建网络:搭建神经网络结构(前传)
- 优化参数:训练网络获取最佳参数(反转)
- 应用网络:将网络封装为模型,输入未曾见过的新数据,输出分类活预测结果(前传)
1、实验环境安装
安装 Anaconda:
conda create -n tensorflow python=3.7 # 新建一个名叫 tensorflow 的环境,用 python3.7 版本
conda activate tensorflow # 进入 tensorflow 环境
conda install cudatoolkit=10.1 # 安装英伟达的SDK10.1版本
conda install cudnn=7.6 # 安装英伟达深度学习软件包7.6版本
pip install tensorflow==2.1 # 安装TensorFlow,指定2.1版本
# 安装完成后,进入python验证一下是否成功了
python
import tensorflow as tf
tf.__version__ # 若显示版本号,说明安装成功
2、神经网络方法
把数据集喂入搭建好的神经网络结构,网络优化参数得到模型,模型读入新输入特征,输出识别结果。
损失函数:预测值(y)与标准答案(y_)的差距。
损失函数可以定量判断 W、b的优劣,当损失函数输出最小时,参数 W、b 会出现最优值。
2.1 tf 的数据类型:
- tf.int, tf.float…( 32位整型:
tf.int 32
、32位浮点:tf.float 32
、64位浮点:tf.float 64
) - tf.bool(
tf.constant([True, Flase])
) - tf.string(
tf.constant("hello, world!")
)
2.2 创建一个 Tensor
# 方法1:直接创建一个张量
tf.constant(张量内容,dtype=数据类型(可选))
# 方法2:将 numpy 的数据类型转换为 Tensor 数据类型
tf.conver_to_tensor(数据名,dtype=数据类型(可选))
# 方法3:使用 tf 自带函数创建张量
# 维度:一维--直接写个数;二维--用[行,列];多维--[n,m,j,k...]
tf.zero(维度) # 创建全为 0 的张量
tf.ones(维度) # 创建全为 1 的张量
tf.fill(维度, 指定值) # 创建全为指定值的张量
# 方法4:使用 random 来创建张量
# 生成正态分布的随机数,默认均值为 0,标准差为 1
tf.random.normal(维度, mean=均值, stddev=标准差)
# 生成截断式正态分布的随机数
tf.random.truncated_normal(维度, mean=均值, stddev=标准差)
# 生成均匀分布的随机数:[min,max)为左闭右开区间
tf.random.uniform(维度, minval=最小值, maxval=最大值)
2.3 tf 的常用函数
# 强制类型转换:强制将 tensor 转换为该数据类型
tf.cast(张量名,dtype=数据类型)
# 计算张量维度上元素的最小值
tf.reduce_min(张量名)
# 计算张量维度上元素的最大值
tf.reduce_max(张量名)
# 计算张量沿着指定维度的平均值
# axis=0 表示纵向;axis=1 表示横向;如不指定axis,则表示对所有元素进行操作
tf.reduce_mean(张量名,axis=操作轴)
# 计算张量沿着指定维度的和
tf.reduce_sum(张量名,axis=操作轴)
# 张量的四则运算:只有维度相同的张量才能做四则运算
tf.add(张量1,张量2) # 加
tf.subtract(张量1,张量2) # 减
tf.multiply(张量1,张量2) # 乘
tf.divide(张量1,张量2) # 除
# 平方、次方、开方
tf.square(张量名) # 平方
tf.pow(张量名,n次方数) # n次方
tf.sqrt(张量名) # 开方
# 矩阵乘法
tf.matmul(矩阵1,矩阵2)
tf.data.Dataset.from_tensor_slices
# 切分传入张量的第一维度,生成输入特征/标签对,构建数据集
data = tf.data.Dataset.from_tensor_slices(输入特征, 标签)
# Numpy 和 Tensor 格式都可用该语句读入数据
tf.Variable
可以讲变量标记为“可训练的”,被它标记了的变量会在反向传播中记录自己的梯度信息
tf.Variable(initial_value, trainable, validate_shape, name)
# initial_value默认为None,可以搭配TensorFlow随机生成函数来初始化参数
# trainable默认为True,表示可以后期被算法优化的,如果不想该变量被优化,改为False
# validate_shape默认为True,形状不接受更改,若需要更改,改为False
# name默认为None,给变量确定名称
tf.GradientTape
# with 结构记录计算过程,gradient 求出张量的梯度
with tf.GradientTape() as tape:
# 若干个计算过程
grad = tape.gradient(函数,对谁求导)
# demo
with tf.GradientTape() as tape:
w = tf.Variable(tf.constant(3.0)) # w 初始值为3
loss = tf.pow(w,2) # 损失函数为 w^2
grad = tape.gradient(loss,w) # 导数为 2*w = 2*3 =6
print(grad)
# enumerate 是 python 的内建函数,可遍历每个元素(如列表、元组或字符串),组合为:<索引、元素>,常在 for 循环中使用
enumerate(列表名)
tf.one_hot
独热编码(one-hot encoding):在分类问题中,常用独热码做标签。标记类别:1表示是,0表示非。
# tf.one_hot() 函数将待转换数据,转换为 one-hot 形式的数据输出
tf.one_hot(待转换数据,depth=几分类)
# demo
classes = 3
labers = tf.constant([1,0,2]) # 输入的元素值最小为0,最大为2
output = tf.one_hot(labers,depth=classes)
print(output)
tf.nn.softmax
当 n 分类的 n 个输出(Y0,Y1,…,Yn-1)通过 softmax() 函数,便符合概率分布了。使每个输出值变成 0~1 之间的概率值。
y = tf.constant([1.01, 2.01, -0.66])
y_pro = tf.nn.softmax(y)
print("After softmax,y_pro is: ",y_pro)
assign_sub
# assign_sub:赋值操作,更新参数的值并返回。调用 assign_sub 前,先用 tf.Variable 定义变量 w 为可训练(可自更新)。
w.assgin_sub(w要自减的内容)
# demo
w = tf.Variable(4)
w.assign_sub(1) # 即 w-=1
print(w) # <tf.Variable 'Variable:0' shape=() dtype=int32, numpy=3>
tf.argmax
返回张量沿指定维度最大值的索引
tf.argmax(张量名,axis=操作轴)
# demo
test = np.array([[1,2,3], [2,3,4], [5,4,3], [8,7,2]])
print(test)
print(tf.argmax(test,axis=0)) # 返回每一列最大值的索引
print(tf.argmax(test,axis=1)) # 返回每一行最大值的索引
3、鸢尾花分类
# 从 sklearn 包 datasets 中读入数据集
from sklearn import datasets
from pandas import DataFrame
import pandas as pd
x_data = datasets.load_iris().data # .data返回iris数据集所有输入特征
y_data = datasets.load_iris().target # .target返回iris数据集所有标签
print("x_data from datasets: \n", x_data)
print("=====================================")
print("y_data from datasets: \n", y_data)
print("=====================================")
# 增加中文标签
x_data = DataFrame(x_data, columns=['花萼长度', '花萼宽度', '花瓣长度', '花瓣宽度']) # 为表格增加行索引(左侧)和列标签(上方)
pd.set_option('display.unicode.east_asian_width', True) # 设置列名对齐
print("x_data add index: \n", x_data)
print("=====================================")
x_data['类别'] = y_data # 新加一列,列标签为‘类别’,数据为y_data
print("x_data add a column: \n", x_data)
# 类型维度不确定时,建议用print函数打印出来确认效果
使用神经网络实现鸢尾花分类
1)准备数据
- 数据集读入
- 数据集乱序
- 生成训练集和测试集(即 x_train / y_train, x_test / y_test)
- 配成(输入特征,标签)对,每次输入一小撮(batch)
2)搭建网络
- 定义神经网络中所有可训练参数
3)参数优化
- 嵌套循环迭代,with 结构更新参数,显示当前 loss
4)测试效果
- 计算当前参数前向传播后的准确率,显示当前 acc
5)acc / loss 可视化
# -*- coding: UTF-8 -*-
# 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线
# 导入所需模块
import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
import numpy as np
# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data # 150行4列
y_data = datasets.load_iris().target
# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116) # 使用相同的seed,保证打乱顺序后输入特征和标签仍然一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116) # 保证每次运行这个代码文件的结果跟上次运行的结果一样
# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
# 训练集和测试集是没有交集的
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]
# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
# tf.cast(张量名,dtype=数据类型) 强制将Tensor转换为该数据类型
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)
# 使输入特征和标签值一一对应(把数据集分批次,每个批次batch组数据)
# tf.data.Dataset.from_tensor_slices((输入特征,标签)) 配成[输入特征,标签]对,每次喂入一小撮(batch)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32) # 每32组数据<输入特征、标签>打包为一个batch
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
# 定义神经网络中的所有可训练参数
# 4个输入特征,故输入层为4个输入节点;因为3分类,故输出层为3个神经元(只用一层网络,输出节点数就等于分类数)
# tf.random.truncated_normal(维度,mean=均值,stddev=标准差) 默认均值为0、标准差为1。数据一定在两倍标准差内,数据更向均值集中
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))
lr = 0.1 # 学习率为0.1
train_loss_results = [] # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = [] # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500 # 循环500轮
loss_all = 0 # 每轮分4个step,loss_all记录4个step生成的4个loss的和
# 训练部分(嵌套循环迭代,with结构更新参数,显示当前loss)
for epoch in range(epoch): # 数据集级别的循环,每个epoch循环一次数据集
# enumerate(列表名) 枚举出每一个元素,并在元素前配上对应的索引号,组合为:索引 元素。常在for循环中使用
for step, (x_train, y_train) in enumerate(train_db): # batch级别的循环,每个step循环一个batch
'''
在with结构中计算前向传播的预测结果y,计算损失函数loss;
loss分别对参数w1和b1计算偏导数,更新参数w1和b1的值,打印出这一轮epoch后的损失函数值
'''
with tf.GradientTape() as tape: # with结构记录梯度信息
y = tf.matmul(x_train, w1) + b1 # 神经网络乘加运算
y = tf.nn.softmax(y) # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
y_ = tf.one_hot(y_train, depth=3) # 将标签值转换为独热码格式,方便计算loss和accuracy
loss = tf.reduce_mean(tf.square(y_ - y)) # 采用均方误差损失函数mse = mean(sum(y-out)^2)
loss_all += loss.numpy() # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确
# 计算loss对各个参数的梯度
grads = tape.gradient(loss, [w1, b1]) # 嵌套循环loss对w1和b1求偏导
# 实现梯度更新 w1 = w1 - lr * w1_grad b = b - lr * b_grad
# 每个step更新参数w1和b1
w1.assign_sub(lr * grads[0]) # 参数w1自更新
b1.assign_sub(lr * grads[1]) # 参数b自更新
# 每个epoch,打印loss信息
'''
因为训练集有120组数据,batch=32,每个step只能喂入32组数据,
需要batch级别循环4次,所以loss/4,求得每次step迭代的平均loss
'''
print("Epoch {}, loss: {}".format(epoch, loss_all / 4))
train_loss_results.append(loss_all / 4) # 将4个step的loss求平均,记录在此变量中
loss_all = 0 # loss_all归零,为记录下一个epoch的loss做准备
# 测试部分(计算当前参数前向传播后的准确率,显示当前准确率acc)
'''
希望每个epoch循环后可以显示当前模型的效果,即识别准确率,
故在epoch循环中又嵌套了一个batch级别的循环
'''
# total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
total_correct, total_number = 0, 0
# 测试时会遍历测试集中的所有数据
for x_test, y_test in test_db:
# 使用更新后的参数进行预测
y = tf.matmul(x_test, w1) + b1 # 计算前向传播的预测结果y
y = tf.nn.softmax(y) # 变为概率分布
pred = tf.argmax(y, axis=1) # 返回y中最大值的索引,即预测的分类(axis=1为横向)
pred = tf.cast(pred, dtype=y_test.dtype) # 将pred转换为y_test即标签的数据类型
correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32) # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
correct = tf.reduce_sum(correct) # 将每个batch的correct数加起来
total_correct += int(correct) # 将所有batch中的correct数加起来
total_number += x_test.shape[0] # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
# 总的准确率等于total_correct/total_number
acc = total_correct / total_number
test_acc.append(acc)
print("Test_acc:", acc)
print("--------------------------")
# 绘制 loss 曲线
plt.title('Loss Function Curve') # 图片标题
plt.xlabel('Epoch') # x轴变量名称
plt.ylabel('Loss') # y轴变量名称
plt.plot(train_loss_results, label="$Loss$") # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend() # 画出曲线图标
plt.show() # 画出图像
# 绘制 Accuracy 曲线
plt.title('Acc Curve') # 图片标题
plt.xlabel('Epoch') # x轴变量名称
plt.ylabel('Acc') # y轴变量名称
plt.plot(test_acc, label="$Accuracy$") # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()