Python 利用Word2Vec计算词语相似度(gensim实现)

本文介绍了如何使用gensim库训练中文词向量,通过skip-gram算法计算词语之间的余弦相似度。主要内容包括设置gensim参数如词向量维度、窗口大小、词频过滤阈值等,并探讨了不同参数对结果的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用 gensim 训练中文词向量,计算词语之间的相似度。

输入:语料库,txt文件。

输出:余弦相似度。

实现代码:

# -*- coding: utf-8 -*-

import logging

from gensim import models
from gensim.models import word2vec


def main():
    logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
    sentences = word2vec.LineSentence("output.txt")
    model = word2vec.Word2Vec(sentences, size=250)

    # 保存模型,供以后使用
    model.save("word2vec.model")

    # 模型读取
    # model = word2vec.Word2Vec.load("your_model_name")

    logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
    model = models.Word2Vec.load('word2vec.model')

    print("提供 3 种测试模式\n")
    print("输入一个词,则去寻找前一百个该词的相似词")
    print("输入两个词,则去计算两个词的余弦相似度")
    print("输入三个词,进行类比推理")

    while True:
        try:
            query = input('')
            q_list = query.split()

            if len(q_list) == 1:
             
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值