YouTube视频推荐系统总结

YouTube的推荐系统采用宽度与深度模型框架,结合多任务学习的MMoE模型,解决参与度和满意度平衡及选择偏见问题。通过浅塔结构减少位置偏见,提升用户体验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

YouTube 视频推荐系统为什么那么强?看了这篇文章你就知道了作为全球主流的视频平台,谷歌旗下视频网站 YouTube 的成功离不开精准的视频推荐系统。YouTube 的推荐系统有何亮点?他们解决了哪些问题?在一篇 RecSys 2019 论文中,谷歌研究者对这些问题做出了解释。来自荷兰的一位数据科学家对论文的内容进行了总结。

论文地址:https://dl.acm.org/citation.cfm?id=3346997

Youtube 的推荐系统解决了什么问题?

在 Youtube 上观看视频时,页面上会展示用户可能喜欢的视频推荐列表。该论文聚焦于以下两大目标:

1)需要优化不用的目标。他们没有定义确切的目标函数,而是将目标函数分为「参与度」(点击量、花的时间)目标和「满意度」(点赞量、踩的量)目标;

2)减少系统引入的「选择偏见」。用户通常更倾向于点开排在第一位的推荐视频,尽管后面的视频可能参与度、满意度更高。如何高效地减少这些偏见是一个亟待解决的问题。

用什么方法解决?

论文中介绍的模型着眼于两个主要的目标。他们用到了一个

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值