OpenCV4读书笔记day11:单目位姿估计

本文介绍了单目位姿估计的概念,利用相机内参、三维点坐标和图像点坐标来计算相机的旋转向量和平移向量。重点讨论了OpenCV4中的solvePnP函数,并解释了其在视觉里程计中的应用。通过解决P3P或PnP问题,可以估算相机的运动轨迹。附带提及了实际应用中平移向量的真实性和旋转的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.单目位姿估计

在这里插入图片描述
  根据相机成像模型,如果已知相机的内参矩阵、世界坐标系中若干空间点的三维坐标和空间点在图像中投影的二维坐标,那么可以计算出世界坐标系到相机坐标系的旋转向量和平移向量。如图所示,当知道点ci在世界坐标系下的三维坐标和这些点在图像中对应点的二维坐标时,结合相机的内参矩阵和畸变系数,就可以计算出世界坐标系变换到相机坐标系的旋转向量和平移向量。
  在这种情况下,可以估计相机在世界坐标系中的位姿。如果将世界坐标系看成前一时刻的相机坐标系姿态,ci在世界坐标系下的三维坐标看成ci在前一时刻相机坐标系中的坐标,就可以估计出前一时刻到当前时刻相机的运动变化,进而得到视觉里程计信息。不过需要注意的是,由于单目相机没有深度信息,因此,如果ci的三维坐标是真实物理尺度的三维坐标,那么估计出的平移向量就是真实的物理尺度,否则就是放缩后的平移向量。
  从理论上来说,只要知道世界坐标系中3个点的三维坐标和对应图像中的坐标,根据相机内参矩阵和畸变系数就可以解算世界坐标系与相机坐标系之间的转换关系。这种利用3个空间点和图像点的解算方法称为P3P方法。当然,如果点数大于3,那么可以得到更加精确的旋转向量和平移向量。当点数大于3时,计算旋转向

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只野生的善逸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值