机器学习笔记之优化算法(十二)梯度下降法:凸函数VS强凸函数

引言

本节将介绍凸函数、强凸函数以及它们之间的联系(补梯度下降法:总体介绍中的坑)。

凸函数:

凸函数的定义与判定条件

关于凸函数的定义表示如下: f ( ⋅ ) f(\cdot) f()为定义在空间 I \mathcal I I上的函数,若对 I \mathcal I I上的任意两点 x 1 , x 2 x_1,x_2 x1,x2任意实数 λ ∈ ( 0 , 1 ) \lambda \in (0,1) λ(0,1)总有
通常将空间 I \mathcal I I设置为实数域与空间 ⇒ R n \Rightarrow \mathbb R^n Rn
f [ λ ⋅ x 2 + ( 1 − λ ) ⋅ x 1 ] ≤ λ ⋅ f ( x 2 ) + ( 1 − λ ) ⋅ f ( x 1 ) f[\lambda \cdot x_2 + (1 - \lambda) \cdot x_1] \leq \lambda \cdot f(x_2) + (1 - \lambda) \cdot f(x_1) f[λx2+(1λ)x1]λf(x2)+(1λ)f(x1)
则称:函数 f ( ⋅ ) f(\cdot) f() I \mathcal I I上的凸函数。对应示例图像表示如下:
将其转化: λ ⋅ x 2 + ( 1 − λ ) ⋅ x 1 = x 1 + λ ⋅ ( x 2 − x 1 ) \lambda \cdot x_2 + (1 - \lambda)\cdot x_1 = x_1 + \lambda \cdot (x_2 - x_1) λx2+(1λ)x1=x1+λ(x2x1),那么 λ ( x 2 − x 1 ) \lambda(x_2 - x_1) λ(x2x1)可看作增量,而 λ \lambda λ可看作控制增量的参数。
凸函数定义示例
凸函数的一种判定条件:构造一个函数 G ( t ) \mathcal G(t) G(t),满足:
G ( t ) ≜ f ( x + v ⋅ t ) ∀ x , v ∈ R n , t ∈ R \mathcal G(t) \triangleq f(x + v \cdot t) \quad \forall x,v \in \mathbb R^n,t \in \mathbb R G(t)f(x+vt)x,vRn,tR
则有推论: f ( ⋅ ) f(\cdot) f()是凸函数 ⇔ G ( t ) \Leftrightarrow \mathcal G(t) G(t)是凸函数。在一般情况下,我们面对的权重空间是一个高维空间,而在高维空间中的目标函数 f ( ⋅ ) f(\cdot) f()也通常是一个高维函数。假设:权重空间是一个 2 2 2维空间,对应的目标函数 f ( ⋅ ) f(\cdot) f()也是一个 2 2 2维函数
即:输入变量的维度是 2 2 2维,而目标函数的输出结果是 1 1 1维标量。
f ( ⋅ ) : R 2 ↦ R f(\cdot):\mathbb R^2 \mapsto \mathbb R f():R2R
那么如何验证 f ( ⋅ ) f(\cdot) f()描述的图像在高维空间中的曲面是否为凸的 ? ? ?在介绍方向导数中提到:关于某一点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)关于函数 f ( ⋅ ) f(\cdot) f()在方向 l ⃗ \vec l l 方向导数 ∂ Z ∂ l ⃗ ∣ ( x 0 , y 0 ) \begin{aligned}\frac{\partial \mathcal Z}{\partial \vec l}|_{(x_0,y_0)}\end{aligned} l Z(x0,y0)表示为下图中在 l ⃗ \vec l l 方向上过 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)做一个垂直于 X O Y \mathcal X\mathcal O\mathcal Y XOY的平面,平面与 f ( ⋅ ) f(\cdot) f()相交的图像在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的斜率结果

  • 其中黄色菱形部分表示垂直于 X O Y \mathcal X\mathcal O\mathcal Y XOY平面在 l ⃗ \vec l l 方向上并过 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)黄色点的平面;红色点则表示 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)在函数 f ( ⋅ ) f(\cdot) f()上的结果;而黑色实线则表示过映射点与函数图像相切的直线,其斜率即方向导数 ∂ Z ∂ l ⃗ ∣ ( x 0 , y 0 ) \begin{aligned}\frac{\partial \mathcal Z}{\partial \vec l}|_{(x_0,y_0)}\end{aligned} l Z(x0,y0)

方向导数定义——示例
但这里我们并不关注方向导数,而是关注平面与函数图像之间相交所产生的截线的形状。可以观察上述图像对应的俯视图结果:
无论是上图还是俯视图,都没有对 f ( x , y ) f(x,y) f(x,y)进行完全表示,这仅仅是其中一部分图像。
俯视图效果
从俯视图角度可以看到:黄色截面简化成了一条直线。这实际上可看做上述判定条件中函数 x + v ⋅ t x+v \cdot t x+vt的某一种结果。而对应的 f ( x + v ⋅ t ) f(x + v \cdot t) f(x+vt)则表达:截面与函数图像之间相交产生的截线

如果从向量的角度认识,以下面红色直线为例:
判定条件2示例
其中 x , v x,v x,v是任意 R n \mathbb R^n Rn的向量,从而 x + v ⋅ t x+v \cdot t x+vt可表示为该图黑色虚线的结果。由于 t ∈ R t \in \mathbb R tR,如果我们将所有的 t t t全部取到,那么最终构成 x + v ⋅ t x + v \cdot t x+vt构成向量的集合就是红色直线的结果。

  • 关于向量 v v v,我们通常将其视作单位向量。因为即便不是单位向量,在转化为单位向量过程中得到的标量系数 k k k也可以与 t t t进行合并: t ∈ R ⇒ k ⋅ t ∈ R t \in\mathbb R \Rightarrow k \cdot t \in \mathbb R tRktR
  • 如果将 v v v看作单位向量 e ⃗ ( cos ⁡ α , cos ⁡ β ) \vec e(\cos \alpha,\cos\beta) e (cosα,cosβ),那么过点 P ( x 0 , y 0 ) \mathcal P(x_0,y_0) P(x0,y0),并且方向与 e ⃗ \vec e e 平行的直线参数方程可表示为
    Y = ( x 0 , y 0 ) + t ⋅ e ⃗ = ( x 0 , y 0 ) + t ⋅ ( cos ⁡ α , cos ⁡ β ) \mathcal Y = (x_0,y_0) + t \cdot \vec e = (x_0,y_0) + t \cdot (\cos\alpha,\cos\beta) Y=(x0,y0)+te =(x0,y0)+t(cosα,cosβ)

因此,关于该判定条件的另一种表达有:如果 x + v ⋅ t x + v \cdot t x+vt在该权重空间中描述的任意一个截面,其与函数 f ( ⋅ ) f(\cdot)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静的喝酒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值