AGTC POJ - 3356

本文介绍了一种求解两字符串转换所需的最小操作数(包括插入、删除和修改)的算法,通过动态规划方法实现,适用于字符串长度不超过1000的情况。提供了详细的算法思路和C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、内容

Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:

    Deletion: a letter in x is missing in y at a corresponding position.
    Insertion: a letter in y is missing in x at a corresponding position.
    Change: letters at corresponding positions are distinct

Certainly, we would like to minimize the number of all possible operations.

    Illustration

    A G T A A G T * A G G C

    | | |       |   |   | |

    A G T * C * T G A C G C

    Deletion: * in the bottom line
    Insertion: * in the top line
    Change: when the letters at the top and bottom are distinct 

This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like

A  G  T  A  A  G  T  A  G  G  C

|  |  |        |     |     |  |

A  G  T  C  T  G  *  A  C  G  C

and 4 moves would be required (3 changes and 1 deletion).

In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where n ≥ m.

Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.

Write a program that would minimize the number of possible operations to transform any string x into a string y.

Input

The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.

Output

An integer representing the minimum number of possible operations to transform any string x into a string y.

Sample Input

10 AGTCTGACGC
11 AGTAAGTAGGC

Sample Output

4

二、思路

  • dp【i】【j】: 代表字符串a用到了i个字符,字符串b用到了j个字符,使2个字符串相等最少用的操作数。
  • 由3个状态转移而来:
    (1)修改第j个字符使得和第i字符相等 dp[i - 1][j - 1] + 1
    (2)删除第j个字符, dp【i】【j - 1】 + 1
    (3)增加一个字符和i相等.dp【i - 1】【j】 + 1

三、代码

#include <cstdio>
#include <cstring>
#define min(a, b) (a > b ? b : a)
using namespace std;
const int N = 1005;
int n, m, dp[N][N]; 
char a[N], b[N];
int main() {
	while (scanf("%d%s%d%s", &n, a + 1, &m, b + 1) != EOF) {
		memset(dp, 0, sizeof(dp));
		//初始化
		for (int i = 1; i <= n; i++) dp[i][0] = i; 
		for (int i = 1; i <= m; i++) dp[0][i] = i; 
		for (int i = 1; i <= n; i++) {
			for (int j = 1; j <= m; j++) {
				dp[i][j] = dp[i - 1][j - 1];
				if (a[i] != b[j]) dp[i][j] += 1;
				dp[i][j] = min(dp[i][j], dp[i][j - 1] + 1);
				dp[i][j] = min(dp[i][j], dp[i - 1][j ] + 1);
			}
		}
		printf("%d\n", dp[n][m]);
	}
	
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值