Leetcode 915. 分割数组

这篇博客讨论了一种解决数组划分问题的算法,要求左数组元素小于等于右数组元素,且左数组长度最小。提供了两种不同的实现方式,第一种使用后缀最小值数组,时间复杂度为O(n),空间复杂度为O(n);第二种优化方法只需O(1)空间,通过维护最大值和当前位置来找到合适分界点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个数组 nums ,将其划分为两个连续子数组 left 和 right, 使得:

    left 中的每个元素都小于或等于 right 中的每个元素。
    left 和 right 都是非空的。
    left 的长度要尽可能小。

在完成这样的分组后返回 left 的 长度 。

用例可以保证存在这样的划分方法。

 

示例 1:

输入:nums = [5,0,3,8,6]
输出:3
解释:left = [5,0,3],right = [8,6]

示例 2:

输入:nums = [1,1,1,0,6,12]
输出:4
解释:left = [1,1,1,0],right = [6,12]

 

提示:

    2 <= nums.length <= 105
    0 <= nums[i] <= 106
    可以保证至少有一种方法能够按题目所描述的那样对 nums 进行划分。 
  • 利用minv来记录后缀最小值,当某个位置前面所有数的最大值<=后面所有数的最小值时该位置便是答案。
  • 时间复杂度O(n)
  • 空间复杂度O(n)
class Solution {
    public int partitionDisjoint(int[] nums) {
        int n = nums.length, maxv = nums[0];
        int[] minv = new int[n];
        minv[n - 1] = nums[n - 1];
        for (int i = n - 2; i >= 0; i--) minv[i] = Math.min(nums[i], minv[i + 1]);
        for (int i = 0; i < n; i++) {
            if (maxv <= minv[i + 1]) return i + 1;
            maxv = Math.max(nums[i], maxv);
        }
        return n;
    }
}
  • 优化:我们通过maxv来保存左边数组的最大值,pos代表最后一个元素位置,若当前元素nums[i]比maxv小,那么代表已经构建的数组不满足要求,更新位置为当前的数,并更新左边数组最大值
  • 时间复杂度O(n)
  • 空间复杂度O(1)
class Solution {
    public int partitionDisjoint(int[] nums) {
        int n = nums.length, maxv = nums[0], cur_maxv = nums[0], pos = 0;
        for (int i = 0; i < n; i++) { 
            cur_maxv = Math.max(nums[i], cur_maxv);
            if (nums[i] < maxv) { //代表和已经划分数组的位置冲突, 更新位置
                maxv = cur_maxv;
                pos = i;
            }
        }
        return pos + 1;
    }
}
题目描述:给定一个非负整数数组nums和一个整数m,你需要将这个数组分成m个非空的连续子数组。设计一个算法使得这m个子数组中的最大和最小。 解题思路: 这是一个典型的二分搜索题目,可以使用二分查找来解决。 1. 首先确定二分的左右边界。左边界为数组中最大的值,右边界为数组中所有元素之和。 2. 在二分搜索的过程中,计算出分割数组的组数count,需要使用当前的中间值来进行判断。若当前的中间值不够分割成m个子数组,则说明mid值偏小,将左边界更新为mid+1;否则,说明mid值偏大,将右边界更新为mid。 3. 当左边界小于等于右边界时,循环终止,此时的左边界即为所求的结果。 具体步骤: 1. 遍历数组,找到数组中的最大值,并计算数组的总和。 2. 利用二分查找搜索左右边界,从左边界到右边界中间的值为mid。 3. 判断当前的mid值是否满足题目要求,若满足则更新右边界为mid-1; 4. 否则,更新左边界为mid+1。 5. 当左边界大于右边界时,循环终止,返回左边界即为所求的结果。 代码实现: ```python class Solution: def splitArray(self, nums: List[int], m: int) -> int: left = max(nums) right = sum(nums) while left <= right: mid = (left + right) // 2 count = 1 total = 0 for num in nums: total += num if total > mid: total = num count += 1 if count > m: left = mid + 1 else: right = mid - 1 return left ``` 时间复杂度分析:二分搜索的时间复杂度为O(logN),其中N为数组的总和,而遍历数组的时间复杂度为O(N),因此总的时间复杂度为O(NlogN)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值