Look-alike小结

简介

将基于种子用户进行相似人群扩展的方法称为look-alike。look-alike不是某个特定的算法,而是一类建模方法的统称。

整体分类

Rule-based

经典论文主要应用场景
2015年:Effective Audience Extension in Online Advertising广告平台标签定向:选择年龄、性别、职业、兴趣标签

论文链接:Effective Audience Extension in Online Advertising

Graph-based

经典论文主要应用场景
Link Prediction Based on GNN(NIPS2018)边缘预测:玩过哪些游戏的用户,更容易安装新游戏
App2Vec: Vector modeling of mobile apps and applications (ASONAM16)应用安装预测:改进 CBOW 在 softmax 加入两个 app 使用间隔时长

论文链接:

  1. Link Prediction Based on GNN
  2. App2Vec: Vector modeling of mobile apps and applications

Similarity-based

分类模型缺点
协同过滤UserCF/ItemCF/MF数据高维稀疏
Graph EmbeddingLINE / GES / Node2vec\
MLP2016年:YoutubeDNN召回\
基于用户画像2016年:Audience Expansion for Online Social Network Advertising基于用户属性的相似度进行人群扩展\
基于相似度的LSH(局部敏感哈希)2016年:Score Look-Alike Audiences使特征相近用户哈希到相同桶\

论文链接:

  1. Audience Expansion for Online Social Network Advertising
  2. Score Look-Alike Audiences

Regression-based

模型思路
2016年:LR:A Sub-linear, Massive-scale Look-alike Audience Extension System1、构建 “用户-用户相似图” 缩小候选集;
2、针对每个 campaign,特征选择 + LR 模型打分
GBDT\
2019:MLP:Comprehensive Audience Expansion based on End-to-End Neural Prediction(SIGIR19)1、对一个用户多次 DSP 广告曝光 / 点击特征做归一化作为特征,是否购买作为标签(拿不到广点通曝光数据);
2、对比 PU learning 问题的三种采样方法 spy / pre-train / bootstrap;
3、对比 LR / FM / bn_mlp / s_mlp / s_bn_mlp 模型,其中 s_mlp 效果最好

论文链接:

  1. A Sub-linear, Massive-scale Look-alike Audience Extension System
  2. Comprehensive Audience Expansion based on End-to-End Neural Prediction

Attention-based

模型思路
2019:RALM:Real-time Attention Based Look-alike Model for Recommender System用于实时资讯推荐:
1、通过某 item的seed user 计算候选 user 的lookalike score,以决定是否推荐 item
2、系统分为两部分
(1)用户表示学习;
(2)Look-alike 学习
优点:user-item 丰富,冷启动 item
2019:Finding Users Who Act Alike: Transfer Learning for Expanding Advertiser Audiences1、利用全局用户数据,训练全局轻量级 embedding 粗排(选择相对static 特征,保持结果稳定)
2、针对每个广告,用迁移学习和统计方法得到新的轻量级 embedding

论文链接:

  1. Real-time Attention Based Look-alike Model for Recommender System
  2. Finding Users Who Act Alike: Transfer Learning for Expanding Advertiser Audiences

典型模型

相关论文

年份主要发表单位会议/期刊论文(链接见下方)
2015Turn(广告公司)ACM15Effective Audience Extension in Online Advertising
2016YahooICDM16A Sub-linear, Massive-scale Look-alike Audience Extension System
2016LinkedinKDD16Audience Expansion for Online Social Network Advertising
2019腾讯微信KDD19RALM:Real-time Attention Based Look-alike Model for Recommender System
2019PinterestKDD19Finding Users Who Act Alike: Transfer Learning for Expanding Advertiser Audiences
2021腾讯微信KDD21MetaHeac:Learning to Expand Audience via Meta Hybrid Experts and Critics for Recommendation and Advertisin

论文链接:

  1. Effective Audience Extension in Online Advertising
  2. A Sub-linear, Massive-scale Look-alike Audience Extension System
  3. Audience Expansion for Online Social Network Advertising
  4. Real-time Attention Based Look-alike Model for Recommender System
  5. Finding Users Who Act Alike: Transfer Learning for Expanding Advertiser Audiences
  6. Learning to Expand Audience via Meta Hybrid Experts and Critics for Recommendation and Advertisin

相关文档

  1. RALM:微信看一看中基于Attention机制的实时Look-alike推荐模型 (jianshu.com)
  2. Pinterest-Lookalike技术:Finding Users Who Act Alike
  3. 详解MetaHeac
  4. Lookalike 算法调研
  5. Lookalike在爱奇艺广告投放中的应用
  6. 画像系统——如何进行相似人群的扩展?(Look-alike)

相关开源代码

结尾

亲爱的读者朋友:感谢您在繁忙中驻足阅读本期内容!您的到来是对我们最大的支持❤️

正如古语所言:"当局者迷,旁观者清"。您独到的见解与客观评价,恰似一盏明灯💡,能帮助我们照亮内容盲区,让未来的创作更加贴近您的需求。

若此文给您带来启发或收获,不妨通过以下方式为彼此搭建一座桥梁: ✨ 点击右上角【点赞】图标,让好内容被更多人看见 ✨ 滑动屏幕【收藏】本篇,便于随时查阅回味 ✨ 在评论区留下您的真知灼见,让我们共同碰撞思维的火花

我始终秉持匠心精神,以键盘为犁铧深耕知识沃土💻,用每一次敲击传递专业价值,不断优化内容呈现形式,力求为您打造沉浸式的阅读盛宴📚。

有任何疑问或建议?评论区就是我们的连心桥!您的每一条留言我都将认真研读,并在24小时内回复解答📝。

愿我们携手同行,在知识的雨林中茁壮成长🌳,共享思想绽放的甘甜果实。下期相遇时,期待看到您智慧的评论与闪亮的点赞身影✨!

万分感谢🙏🙏您的点赞👍👍、收藏⭐🌟、评论💬🗯️、关注❤️💚~


自我介绍:一线互联网大厂资深算法研发(工作6年+),4年以上招聘面试官经验(一二面面试官,面试候选人400+),深谙岗位专业知识、技能雷达图,已累计辅导15+求职者顺利入职大中型互联网公司。熟练掌握大模型、NLP、搜索、推荐、数据挖掘算法和优化,提供面试辅导、专业知识入门到进阶辅导等定制化需求等服务,助力您顺利完成学习和求职之旅(有需要者可私信联系) 

友友们,自己的知乎账号为“快乐星球”,定期更新技术文章,敬请关注!   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值