简介
将基于种子用户进行相似人群扩展的方法称为look-alike。look-alike不是某个特定的算法,而是一类建模方法的统称。
整体分类
Rule-based
经典论文 | 主要应用场景 |
2015年:Effective Audience Extension in Online Advertising | 广告平台标签定向:选择年龄、性别、职业、兴趣标签 |
论文链接:Effective Audience Extension in Online Advertising
Graph-based
经典论文 | 主要应用场景 |
Link Prediction Based on GNN(NIPS2018) | 边缘预测:玩过哪些游戏的用户,更容易安装新游戏 |
App2Vec: Vector modeling of mobile apps and applications (ASONAM16) | 应用安装预测:改进 CBOW 在 softmax 加入两个 app 使用间隔时长 |
论文链接:
Similarity-based
分类 | 模型 | 缺点 |
协同过滤 | UserCF/ItemCF/MF | 数据高维稀疏 |
Graph Embedding | LINE / GES / Node2vec | \ |
MLP | 2016年:YoutubeDNN召回 | \ |
基于用户画像 | 2016年:Audience Expansion for Online Social Network Advertising基于用户属性的相似度进行人群扩展 | \ |
基于相似度的LSH(局部敏感哈希) | 2016年:Score Look-Alike Audiences使特征相近用户哈希到相同桶 | \ |
论文链接:
Regression-based
模型 | 思路 |
2016年:LR:A Sub-linear, Massive-scale Look-alike Audience Extension System | 1、构建 “用户-用户相似图” 缩小候选集; 2、针对每个 campaign,特征选择 + LR 模型打分 |
GBDT | \ |
2019:MLP:Comprehensive Audience Expansion based on End-to-End Neural Prediction(SIGIR19) | 1、对一个用户多次 DSP 广告曝光 / 点击特征做归一化作为特征,是否购买作为标签(拿不到广点通曝光数据); 2、对比 PU learning 问题的三种采样方法 spy / pre-train / bootstrap; 3、对比 LR / FM / bn_mlp / s_mlp / s_bn_mlp 模型,其中 s_mlp 效果最好 |
论文链接:
- A Sub-linear, Massive-scale Look-alike Audience Extension System
- Comprehensive Audience Expansion based on End-to-End Neural Prediction
Attention-based
模型 | 思路 |
2019:RALM:Real-time Attention Based Look-alike Model for Recommender System | 用于实时资讯推荐: 1、通过某 item的seed user 计算候选 user 的lookalike score,以决定是否推荐 item 2、系统分为两部分 (1)用户表示学习; (2)Look-alike 学习 优点:user-item 丰富,冷启动 item |
2019:Finding Users Who Act Alike: Transfer Learning for Expanding Advertiser Audiences | 1、利用全局用户数据,训练全局轻量级 embedding 粗排(选择相对static 特征,保持结果稳定) 2、针对每个广告,用迁移学习和统计方法得到新的轻量级 embedding |
论文链接:
- Real-time Attention Based Look-alike Model for Recommender System
- Finding Users Who Act Alike: Transfer Learning for Expanding Advertiser Audiences
典型模型
相关论文
年份 | 主要发表单位 | 会议/期刊 | 论文(链接见下方) |
2015 | Turn(广告公司) | ACM15 | Effective Audience Extension in Online Advertising |
2016 | Yahoo | ICDM16 | A Sub-linear, Massive-scale Look-alike Audience Extension System |
2016 | KDD16 | Audience Expansion for Online Social Network Advertising | |
2019 | 腾讯微信 | KDD19 | RALM:Real-time Attention Based Look-alike Model for Recommender System |
2019 | KDD19 | Finding Users Who Act Alike: Transfer Learning for Expanding Advertiser Audiences | |
2021 | 腾讯微信 | KDD21 | MetaHeac:Learning to Expand Audience via Meta Hybrid Experts and Critics for Recommendation and Advertisin |
论文链接:
- Effective Audience Extension in Online Advertising
- A Sub-linear, Massive-scale Look-alike Audience Extension System
- Audience Expansion for Online Social Network Advertising
- Real-time Attention Based Look-alike Model for Recommender System
- Finding Users Who Act Alike: Transfer Learning for Expanding Advertiser Audiences
- Learning to Expand Audience via Meta Hybrid Experts and Critics for Recommendation and Advertisin
相关文档
- RALM:微信看一看中基于Attention机制的实时Look-alike推荐模型 (jianshu.com)
- Pinterest-Lookalike技术:Finding Users Who Act Alike
- 详解MetaHeac
- Lookalike 算法调研
- Lookalike在爱奇艺广告投放中的应用
- 画像系统——如何进行相似人群的扩展?(Look-alike)
相关开源代码
结尾
亲爱的读者朋友:感谢您在繁忙中驻足阅读本期内容!您的到来是对我们最大的支持❤️
正如古语所言:"当局者迷,旁观者清"。您独到的见解与客观评价,恰似一盏明灯💡,能帮助我们照亮内容盲区,让未来的创作更加贴近您的需求。
若此文给您带来启发或收获,不妨通过以下方式为彼此搭建一座桥梁: ✨ 点击右上角【点赞】图标,让好内容被更多人看见 ✨ 滑动屏幕【收藏】本篇,便于随时查阅回味 ✨ 在评论区留下您的真知灼见,让我们共同碰撞思维的火花
我始终秉持匠心精神,以键盘为犁铧深耕知识沃土💻,用每一次敲击传递专业价值,不断优化内容呈现形式,力求为您打造沉浸式的阅读盛宴📚。
有任何疑问或建议?评论区就是我们的连心桥!您的每一条留言我都将认真研读,并在24小时内回复解答📝。
愿我们携手同行,在知识的雨林中茁壮成长🌳,共享思想绽放的甘甜果实。下期相遇时,期待看到您智慧的评论与闪亮的点赞身影✨!
万分感谢🙏🙏您的点赞👍👍、收藏⭐🌟、评论💬🗯️、关注❤️💚~
自我介绍:一线互联网大厂资深算法研发(工作6年+),4年以上招聘面试官经验(一二面面试官,面试候选人400+),深谙岗位专业知识、技能雷达图,已累计辅导15+求职者顺利入职大中型互联网公司。熟练掌握大模型、NLP、搜索、推荐、数据挖掘算法和优化,提供面试辅导、专业知识入门到进阶辅导等定制化需求等服务,助力您顺利完成学习和求职之旅(有需要者可私信联系)
友友们,自己的知乎账号为“快乐星球”,定期更新技术文章,敬请关注!