题目列表
-
53. 最大子数组和 中等难度 leetcode链接
-
56. 合并区间 中等难度 leetcode链接
-
189. 轮转数组 中等难度 leetcode链接
-
238. 除自身以外数组的乘积 中等难度 leetcode链接
-
41. 缺失的第一个正数 中等难度 leetcode链接
题目
(1)最大子数组和
题目
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4] 输出:6 解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
输入:nums = [1] 输出:1
示例 3:
输入:nums = [5,4,-1,7,8] 输出:23
提示:
-
1 <= nums.length <= 10(5)
-
-10(4) <= nums[i] <= 10(4)
思路
时间复杂度:O(n)
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
dp = [0] * len(nums)
dp[0] = nums[0]
result = dp[0]
for i in range(1, len(nums)):
dp[i] = max(dp[i-1] + nums[i], nums[i]) #状态转移公式
result = max(result, dp[i]) #result 保存dp[i]的最大值
return result
(2)合并区间
题目
以数组 intervals
表示若干个区间的集合,其中单个区间为 intervals[i] = [start(i), end(i)]
。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。
示例 1:
输入:intervals = [[1,3],[2,6],[8,10],[15,18]] 输出:[[1,6],[8,10],[15,18]] 解释:区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].
示例 2:
输入:intervals = [[1,4],[4,5]] 输出:[[1,5]] 解释:区间 [1,4] 和 [4,5] 可被视为重叠区间。
提示:
-
1 <= intervals.length <= 10(4)
-
intervals[i].length == 2
-
0 <= start(i) <= end(i) <= 10(4)
思路
时间复杂度:nlogn
空间复杂度:O(n)
class Solution:
def merge(self, intervals: List[List[int]]) -> List[List[int]]:
# 排序
intervals.sort(key=lambda x: x[0])
ans = []
for interval in intervals:
# ans 为空则直接添加
if not ans:
ans.append(interval)
else:
lastEnd = ans[-1][1]
start, end = interval
if lastEnd >= start: # 相交则更新 ans 中的 lastEnd
ans[-1][1] = max(lastEnd, end)
else: # 不相交则添在尾部
ans.append(interval)
return ans
(3) 轮转数组
题目
给定一个整数数组 nums
,将数组中的元素向右轮转 k
个位置,其中 k
是非负数。
示例 1:
输入: nums = [1,2,3,4,5,6,7], k = 3 输出: [5,6,7,1,2,3,4]解释: 向右轮转 1 步: [7,1,2,3,4,5,6] 向右轮转 2 步: [6,7,1,2,3,4,5] 向右轮转 3 步: [5,6,7,1,2,3,4]
示例 2:
输入:nums = [-1,-100,3,99], k = 2 输出:[3,99,-1,-100] 解释: 向右轮转 1 步: [99,-1,-100,3] 向右轮转 2 步: [3,99,-1,-100]
提示:
-
1 <= nums.length <= 10(5)
-
-2(31) <= nums[i] <= 2(31) - 1
-
0 <= k <= 10(5)
思路
时间复杂度:O(n),其中n是nums的长度
空间复杂度:O(1)
# 注:请勿使用切片,会产生额外空间
class Solution:
def rotate(self, nums: List[int], k: int) -> None:
def reverse(i: int, j: int) -> None:
while i < j:
nums[i], nums[j] = nums[j], nums[i]
i += 1
j -= 1
n = len(nums)
k %= n # 轮转 k 次等于轮转 k % n 次
reverse(0, n - 1)
reverse(0, k - 1)
reverse(k, n - 1)
(4)除自身以外数组的乘积
题目
给你一个整数数组 nums
,返回 数组 answer
,其中 answer[i]
等于 nums
中除 nums[i]
之外其余各元素的乘积 。
题目数据 保证 数组 nums
之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。
请 不要使用除法,且在 O(n)
时间复杂度内完成此题。
示例 1:
输入: nums = [1,2,3,4]输出: [24,12,8,6]
示例 2:
输入: nums = [-1,1,0,-3,3] 输出: [0,0,9,0,0]
提示:
-
2 <= nums.length <= 10(5)
-
-30 <= nums[i] <= 30
-
输入 保证 数组
answer[i]
在 32 位 整数范围内
思路
#时间复杂度 O(N):其中 N 为数组长度,两轮遍历数组nums,使用O(N)时间。
#空间复杂度 O(1):变量tmp使用常数大小额外空间(数组ans作为返回值,不计入复杂度考虑)。
class Solution:
def productExceptSelf(self, nums: List[int]) -> List[int]:
ans, tmp = [1] * len(nums), 1
for i in range(1, len(nums)):
ans[i] = ans[i - 1] * nums[i - 1] # 下三角
for i in range(len(nums) - 2, -1, -1):
tmp *= nums[i + 1] # 上三角
ans[i] *= tmp # 下三角 * 上三角
return ans
(5)缺失的第一个正数
给你一个未排序的整数数组 nums
,请你找出其中没有出现的最小的正整数。
请你实现时间复杂度为 O(n)
并且只使用常数级别额外空间的解决方案。
题目
示例 1:
输入:nums = [1,2,0] 输出:3 解释:范围 [1,2] 中的数字都在数组中。
示例 2:
输入:nums = [3,4,-1,1] 输出:2 解释:1 在数组中,但 2 没有。
示例 3:
输入:nums = [7,8,9,11,12] 输出:1 解释:最小的正数 1 没有出现。
提示:
-
1 <= nums.length <= 10(5)
-
-2(31) <= nums[i] <= 2(31) - 1
思路
#时间复杂度 O(N):其中N为数组长度
#空间复杂度 O(1)
class Solution:
def firstMissingPositive(self, nums: List[int]) -> int:
n = len(nums)
for i in range(n):
if nums[i] <= 0:
nums[i] = n + 1
for i in range(n):
num = abs(nums[i])
if num <= n:
nums[num - 1] = -abs(nums[num - 1])
for i in range(n):
if nums[i] > 0:
return i + 1
return n + 1
结尾
亲爱的读者朋友:感谢您在繁忙中驻足阅读本期内容!您的到来是对我们最大的支持❤️
正如古语所言:"当局者迷,旁观者清"。您独到的见解与客观评价,恰似一盏明灯💡,能帮助我们照亮内容盲区,让未来的创作更加贴近您的需求。
若此文给您带来启发或收获,不妨通过以下方式为彼此搭建一座桥梁: ✨ 点击右上角【点赞】图标,让好内容被更多人看见 ✨ 滑动屏幕【收藏】本篇,便于随时查阅回味 ✨ 在评论区留下您的真知灼见,让我们共同碰撞思维的火花
我始终秉持匠心精神,以键盘为犁铧深耕知识沃土💻,用每一次敲击传递专业价值,不断优化内容呈现形式,力求为您打造沉浸式的阅读盛宴📚。
有任何疑问或建议?评论区就是我们的连心桥!您的每一条留言我都将认真研读,并在24小时内回复解答📝。
愿我们携手同行,在知识的雨林中茁壮成长🌳,共享思想绽放的甘甜果实。下期相遇时,期待看到您智慧的评论与闪亮的点赞身影✨!
万分感谢🙏🙏您的点赞👍👍、收藏⭐🌟、评论💬🗯️、关注❤️💚~
自我介绍:一线互联网大厂资深算法研发(工作6年+),4年以上招聘面试官经验(一二面面试官,面试候选人400+),深谙岗位专业知识、技能雷达图,已累计辅导15+求职者顺利入职大中型互联网公司。熟练掌握大模型、NLP、搜索、推荐、数据挖掘算法和优化,提供面试辅导、专业知识入门到进阶辅导等定制化需求等服务,助力您顺利完成学习和求职之旅(有需要者可私信联系)
友友们,自己的知乎账号为“快乐星球”,定期更新技术文章,敬请关注!