卷积神经网络中padding后计算输出大小公式

本文详细介绍了卷积神经网络中输出尺寸的计算方法,包括输入大小、填充、步幅和滤波器大小等关键参数如何影响输出尺寸。通过具体实例解析,帮助读者深入理解卷积层的工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假设输入大小为(H,W),滤波器大小为(FH,FW),输出大小为(OH,OW),填充为P,步幅为S。
此时,输出大小公式:

OH = H+2P−FHS\frac{H + 2P - FH} {S}SH+2PFH + 1

OW = W+2P−FWS\frac{W + 2P - FW}{S}SW+2PFW+1

举例:
输入大小:(28,31);
填充:2;
步幅:3;
滤波器大小:(5,5)

OH = 28+2∗2−53\frac{28 + 2*2 - 5} {3}328+225 + 1 = 10

OW = 31+2∗2−53\frac{31 + 2*2 - 5}{3}331+225 + 1 = 11

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值