后来,月亮说,其实你小时候我真的有跟着你走了很久很久…
🎯作者主页: 追光者♂🔥
🌸个人简介:
💖[1] 计算机专业硕士研究生💖
🌟[2] 2022年度博客之星人工智能领域TOP4🌟
🏅[3] 阿里云社区特邀专家博主🏅
🏆[4] CSDN-人工智能领域优质创作者🏆
📝[5] 预期2023年10月份 · 准CSDN博客专家📝
- 无限进步,一起追光!!!
🍎感谢大家 点赞👍 收藏⭐ 留言📝!!!
-
①【自监督学习 · 图神经网络 · 文献精读】使用多尺度子图视图的自监督图表示学习对比 | 子图采样策略 | 自监督 | 对比学习 | 数据增强
-
②【自监督学习 · 图神经网络 · 文献精读】用策略和主动选择的标签集进行自我监督的节点分类 | 半监督分类 | 自动超参数优化 | SSL
-
③【自监督学习 · 图神经网络 · 文献精读】图对比学习 | 图数据增强 | 视频问答 | 预训练技术 | 自监督对比学习方法 | GCN | KL散度
-
④【自监督学习 · 图神经网络 · 文献精读】计算机八大核心期刊 | (会话) 推荐算法 | 数据增强 | 自监督混合图神经网络 | 多头注意力机制 | 图表示学习 | 超图 | 动态图对比学习
-
⑤ 【自监督学习 · 图神经网络 · 文献精读】GCN存在的缺陷 | 多任务学习 | 自监督辅助任务 | 图卷积网络 | 半监督图分类任务 | 附:文心一言 测试
🌿时空图神经网络(Spatial Time Graph Neural Network,ST-GNN)是一种用于联合处理时变网络数据的基本时空拓扑的图神经网络结构。它结合了时间和图卷积滤波器,以及逐点非线性激活函数,以实现对时空数据的有效建模。ST-GNN的基本体系结构包括时间和图卷积滤波器,以及逐点非线性激活函数。其中,时间卷积用于对时间序列数据进行建模,而图卷积滤波器用于对图数据进行建模。逐点非线性激活函数用于对每个时间点的数据进行建模,以捕捉输入时间点的局部变化。
时间所限,不足之处,还请大家多多见谅!