⑥【自监督学习 · 时空图神经网络 · 文献精读】知识图谱 | 推荐 | 命名实体识别NER | 空间-时间知识图谱 | 时空知识图 | 时空相似性

本文探讨了自监督学习在艺术史领域的应用,特别是在艺术家推荐方面的创新。通过时空图神经网络(ST-GNN),作者构建了艺术家的历史知识图谱,以捕捉艺术家之间的时空相似性。研究中,使用命名实体识别(NER)工具从维基百科获取数据,并通过自监督学习方法学习知识图谱,提高了推荐系统的准确性。实验结果验证了这种方法的有效性,为艺术史研究和推荐系统提供了新的视角。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 
后来,月亮说,其实你小时候我真的有跟着你走了很久很久…

 

🎯作者主页: 追光者♂🔥

        

🌸个人简介:
 
💖[1] 计算机专业硕士研究生💖
 
🌟[2] 2022年度博客之星人工智能领域TOP4🌟
 
🏅[3] 阿里云社区特邀专家博主🏅
 
🏆[4] CSDN-人工智能领域优质创作者🏆
 
📝[5] 预期2023年10月份 · 准CSDN博客专家📝  
 

  • 无限进步,一起追光!!!

        

🍎感谢大家 点赞👍  收藏⭐   留言📝!!!

 

🌿时空图神经网络(Spatial Time Graph Neural Network,ST-GNN)是一种用于联合处理时变网络数据的基本时空拓扑的图神经网络结构。它结合了时间和图卷积滤波器,以及逐点非线性激活函数,以实现对时空数据的有效建模。ST-GNN的基本体系结构包括时间和图卷积滤波器,以及逐点非线性激活函数。其中,时间卷积用于对时间序列数据进行建模,而图卷积滤波器用于对图数据进行建模。逐点非线性激活函数用于对每个时间点的数据进行建模,以捕捉输入时间点的局部变化。

时间所限,不足之处,还请大家多多见谅!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追光者♂

谢谢你呀!一起加油!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值