本文综述了多篇关于交通流量预测的研究,重点探讨了如何利用深度学习技术,特别是图神经网络(GNN)和循环神经网络(RNN),来捕捉交通数据的时空相关性。研究普遍指出,交通流量预测面临的主要挑战包括多时间相关性、复杂空间相关性和高度异质性。为解决这些问题,各研究提出了不同的模型架构。例如,ST-3DDMCRN 模型通过三维 Densenet 和多尺度 ConvLSTM-Resnet 网络捕捉局部和远距离的时空信息;MGCN-WOALSTM 模型结合多通道图卷积网络和鲸鱼优化算法,提升了预测精度;STAGCN 模型则通过自适应图生成块捕捉静态和动态路网结构。此外,GTA 框架利用图嵌入技术和注意力机制,有效整合了多传感器数据的时空依赖性;DTC-STGCN 模型则通过动态邻接矩阵和注意力机制,捕捉了交通数据的动态时空特征。总体而言,这些研究通过创新的深度学习架构,显著提升了交通流量预测的准确性,为智能交通系统的实现提供了有力支持。
前情提要:
目录
- 一、检索2
- 二、信息
-
- 2.1 Deep spatio-temporal 3D..
- 2.2 Research on Regional
- 2.3 Spatio-temporal adaptive...
- 2.4 A Graph-Based Temporal...
- 2.5 ** Dynamic traffic correlations...
- 2.6 Deep Spatio-temporal Adaptive 3D...
- 2.7 Dynamic Multi-View...
- 2.8 Graph convolutional dynamic...
- 2.9 A novel grey prediction...
- 2.10 Spatial dynamic graph...
- 2.11 DyGCN-LSTM...
- 三、下载
一、检索2
关键词:
Traffic