交通-2:Traffic Forecasting | 考虑交通帧的时空异质性 | 通过提取动态邻接矩阵来描述动态时空相关性 | 交通流预测,阅读文章合集(2

本文综述了多篇关于交通流量预测的研究,重点探讨了如何利用深度学习技术,特别是图神经网络(GNN)和循环神经网络(RNN),来捕捉交通数据的时空相关性。研究普遍指出,交通流量预测面临的主要挑战包括多时间相关性、复杂空间相关性和高度异质性。为解决这些问题,各研究提出了不同的模型架构。例如,ST-3DDMCRN 模型通过三维 Densenet 和多尺度 ConvLSTM-Resnet 网络捕捉局部和远距离的时空信息;MGCN-WOALSTM 模型结合多通道图卷积网络和鲸鱼优化算法,提升了预测精度;STAGCN 模型则通过自适应图生成块捕捉静态和动态路网结构。此外,GTA 框架利用图嵌入技术和注意力机制,有效整合了多传感器数据的时空依赖性;DTC-STGCN 模型则通过动态邻接矩阵和注意力机制,捕捉了交通数据的动态时空特征。总体而言,这些研究通过创新的深度学习架构,显著提升了交通流量预测的准确性,为智能交通系统的实现提供了有力支持。

前情提要:

一、检索2

关键词:

Traffic
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追光者♂

谢谢你呀!一起加油!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值