强化学习中,Q-Learning与Sarsa的差别有多大?

本文对比了强化学习中的Q-Learning和Sarsa算法。Q-Learning采用离线学习,追求最大收益,而Sarsa是在线学习,更注重实际动作的选择。在例子中,Q-Learning倾向于直接路径,Sarsa则避免风险。两者在决策和更新策略上有显著区别,适应不同应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文首发于:行者AI

我相信,从某种意义上讲,强化学习是人工智能的未来。 —— 强化学习之父,Richard Sutton

简单来说就是,智能体通过强化学习,可以知道自己在什么状态下,应该采取什么样的动作使得自身获得最大奖励。强化学习分为在线学习和离线学习,本文以Q-learning(离线)和Sarsa(在线)出发,浅谈两者异同。

1. 简述Q-learning

Q-Learning是强化学习算法中Value-based中的一种算法,Q即为Q(s,a)就是在某一时刻的s状态下(s∈S),采取动作a (a∈A)动作能够获得收益的期望,环境会根据agent的动作反馈相应的回报reward r,所以算法的主要思想就是将State与Action构建成一张Q-table来存储Q值,然后根据Q值来选取能够获得最大的收益的动作。

更简单的理解就是我们基于状态s利用 ε − g r e e d y \varepsilon-greedy εgreedy​​​法进行贪婪选择出动作a,然后执行动作a,得出下一状态s’以及reward r

Q ( s , a ) = Q ( s , a ) + α ∗ ( r + γ ∗ m a x ( Q ( s ′ , a ∗ ) ) − Q ( s , a ) ) Q(s,a) = Q(s,a) + α*(r+γ*{max}(Q(s',a^*))-Q(s,a)) Q(s,a)=Q(s,a)+α(r+γmax(Q(s

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值