负频率与双边频谱(信号与系统的基本概念)

本文深入探讨了负频率在信号处理中的数学意义及其物理解释,解释了为何实函数需通过正负频率对来保持其实数特性,同时给出了幅度频谱与相位频谱的实例分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 转自北邮MOOC《信号与系统》
  • 对于双边频谱,负频率 nω1n\omega_1nω1 只有数学意义而无物理意义
  • 为什么引入负频率?
    f(t)f(t)f(t) 是实函数,分解成虚指数必须有共轭对 ejnω1e^{jn\omega_1}ejnω1e−jnω1e^{-jn\omega_1}ejnω1,才能保证 f(t)f(t)f(t) 的实函数性质不变
    cncos(nω1t+ϕn)=12cn[ej(nω1t+ϕn)+e−j(nω1t+ϕn)]c_ncos(n\omega_1t+\phi_n)=\frac{1}{2}c_n[e^{j(n\omega_1t+\phi_n)}+e^{-j(n\omega_1t+\phi_n)}]cncos(nω1t+ϕn)=21cn[ej(nω1t+ϕn)+ej(nω1t+ϕn)]
  • 幅度频谱和相位频谱
    在这里插入图片描述
  • 实际例子
    在这里插入图片描述
  • 幅度谱一分为2,偶对称,相位谱奇对称
    在这里插入图片描述
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值