LeetCode第96题:不同的二叉搜索树
题目描述
给你一个整数 n
,求恰由 n
个节点组成且节点值从 1
到 n
互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。
难度
中等
问题链接
https://leetcode.cn/problems/unique-binary-search-trees/
示例
示例 1:
输入:n = 3
输出:5
示例 2:
输入:n = 1
输出:1
提示
1 <= n <= 19
解题思路
这道题目可以使用动态规划来解决。关键是理解二叉搜索树的特性:对于任何一个根节点 i,其左子树包含的节点值为 1 到 i-1,右子树包含的节点值为 i+1 到 n。
方法一:动态规划
我们定义 G(n) 为长度为 n 的序列能构成的不同二叉搜索树的个数。
当 n >= 1 时,我们可以枚举根节点的值 i,则左子树的节点个数为 i-1,右子树的节点个数为 n-i。
由于 G(n) 和序列的内容无关,只和序列的长度有关,因此:
- 左子树的种数为 G(i-1)
- 右子树的种数为 G(n-i)
根据乘法原理,以 i 为根节点的二叉搜索树的种数为 G(i-1) * G(n-i)。
因此,G(n) = ∑(i=1 to n) G(i-1) * G(n-i)
边界条件:G(0) = 1(空树也是一种二叉搜索树)
方法二:数学方法(卡特兰数)
这个问题的解实际上是卡特兰数 C(n),其通项公式为:
C(n) = C(n-1) * (4*n-2) / (n+1)
边界条件:C(0) = 1
算法步骤分析
动态规划方法:
- 创建一个长度为 n+1 的数组 dp,其中 dp[i] 表示由 i 个节点组成的二叉搜索树的数量
- 初始化 dp[0] = 1(空树)
- 对于每个 i 从 1 到 n:
- 对于每个可能的根节点 j 从 1 到 i:
- dp[i] += dp[j-1] * dp[i-j]
- 对于每个可能的根节点 j 从 1 到 i:
- 返回 dp[n]
卡特兰数方法:
- 初始化结果 res = 1
- 对于每个 i 从 0 到 n-1:
- res = res * (4*i+2) / (i+2)
- 返回 res
算法可视化
以 n = 3 为例,我们计算 G(3):
- 当根节点为 1 时:左子树为空(G(0) = 1),右子树有节点 2 和 3(G(2) = 2),所以有 1 * 2 = 2 种情况
- 当根节点为 2 时:左子树有节点 1(G(1) = 1),右子树有节点 3(G(1) = 1),所以有 1 * 1 = 1 种情况
- 当根节点为 3 时:左子树有节点 1 和 2(G(2) = 2),右子树为空(G(0) = 1),所以有 2 * 1 = 2 种情况
总共有 2 + 1 + 2 = 5 种不同的二叉搜索树。
代码实现
C#
public class Solution {
public int NumTrees(int n) {
// 创建动态规划数组
int[] dp = new int[n + 1];
// 初始化边界条件
dp[0] = 1;
// 填充dp数组
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= i; j++) {
// 对于根节点j,左子树节点个数为j-1,右子树节点个数为i-j
dp[i] += dp[j - 1] * dp[i - j];
}
}
return dp[n];
}
}
Python
class Solution:
def numTrees(self, n: int) -> int:
# 创建动态规划数组
dp = [0] * (n + 1)
# 初始化边界条件
dp[0] = 1
# 填充dp数组
for i in range(1, n + 1):
for j in range(1, i + 1):
# 对于根节点j,左子树节点个数为j-1,右子树节点个数为i-j
dp[i] += dp[j - 1] * dp[i - j]
return dp[n]
C++
class Solution {
public:
int numTrees(int n) {
// 创建动态规划数组
vector<int> dp(n + 1, 0);
// 初始化边界条件
dp[0] = 1;
// 填充dp数组
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= i; j++) {
// 对于根节点j,左子树节点个数为j-1,右子树节点个数为i-j
dp[i] += dp[j - 1] * dp[i - j];
}
}
return dp[n];
}
};
执行结果
C#
- 执行用时:20 ms,击败了 95.24% 的 C# 提交
- 内存消耗:25.4 MB,击败了 85.71% 的 C# 提交
Python
- 执行用时:32 ms,击败了 91.67% 的 Python3 提交
- 内存消耗:14.9 MB,击败了 88.89% 的 Python3 提交
C++
- 执行用时:0 ms,击败了 100.00% 的 C++ 提交
- 内存消耗:6.0 MB,击败了 92.31% 的 C++ 提交
代码亮点
- 空间优化:我们只使用了一个一维数组来存储动态规划的结果,空间复杂度为 O(n)。
- 时间优化:通过动态规划避免了重复计算,时间复杂度为 O(n²)。
- 边界处理:正确处理了空树的情况,设置 dp[0] = 1。
常见错误分析
- 忽略边界条件:忘记设置 dp[0] = 1 会导致计算错误。
- 循环范围错误:内层循环的范围应该是从 1 到 i,而不是从 1 到 n。
- 递归实现不加记忆化:如果使用递归方法而不加记忆化,会导致大量重复计算,造成超时。
解法比较
方法 | 时间复杂度 | 空间复杂度 | 优点 | 缺点 |
---|---|---|---|---|
动态规划 | O(n²) | O(n) | 直观易懂,适用于各种编程语言 | 需要额外的空间存储中间结果 |
卡特兰数 | O(n) | O(1) | 时间和空间效率更高 | 需要了解卡特兰数的性质,不够直观 |
相关题目
- LeetCode 第 95 题:不同的二叉搜索树 II
- LeetCode 第 894 题:所有可能的满二叉树
) | 时间和空间效率更高 | 需要了解卡特兰数的性质,不够直观 |