LeetCode第96题_不同的二叉搜索树

LeetCode第96题:不同的二叉搜索树

题目描述

给你一个整数 n ,求恰由 n 个节点组成且节点值从 1n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。

难度

中等

问题链接

https://leetcode.cn/problems/unique-binary-search-trees/

示例

示例 1:

示例1

输入:n = 3
输出:5

示例 2:

输入:n = 1
输出:1

提示

  • 1 <= n <= 19

解题思路

这道题目可以使用动态规划来解决。关键是理解二叉搜索树的特性:对于任何一个根节点 i,其左子树包含的节点值为 1 到 i-1,右子树包含的节点值为 i+1 到 n。

方法一:动态规划

我们定义 G(n) 为长度为 n 的序列能构成的不同二叉搜索树的个数。

当 n >= 1 时,我们可以枚举根节点的值 i,则左子树的节点个数为 i-1,右子树的节点个数为 n-i。

由于 G(n) 和序列的内容无关,只和序列的长度有关,因此:

  • 左子树的种数为 G(i-1)
  • 右子树的种数为 G(n-i)

根据乘法原理,以 i 为根节点的二叉搜索树的种数为 G(i-1) * G(n-i)。

因此,G(n) = ∑(i=1 to n) G(i-1) * G(n-i)

边界条件:G(0) = 1(空树也是一种二叉搜索树)

方法二:数学方法(卡特兰数)

这个问题的解实际上是卡特兰数 C(n),其通项公式为:

C(n) = C(n-1) * (4*n-2) / (n+1)

边界条件:C(0) = 1

算法步骤分析

动态规划方法:

  1. 创建一个长度为 n+1 的数组 dp,其中 dp[i] 表示由 i 个节点组成的二叉搜索树的数量
  2. 初始化 dp[0] = 1(空树)
  3. 对于每个 i 从 1 到 n:
    • 对于每个可能的根节点 j 从 1 到 i:
      • dp[i] += dp[j-1] * dp[i-j]
  4. 返回 dp[n]

卡特兰数方法:

  1. 初始化结果 res = 1
  2. 对于每个 i 从 0 到 n-1:
    • res = res * (4*i+2) / (i+2)
  3. 返回 res

算法可视化

以 n = 3 为例,我们计算 G(3):

  • 当根节点为 1 时:左子树为空(G(0) = 1),右子树有节点 2 和 3(G(2) = 2),所以有 1 * 2 = 2 种情况
  • 当根节点为 2 时:左子树有节点 1(G(1) = 1),右子树有节点 3(G(1) = 1),所以有 1 * 1 = 1 种情况
  • 当根节点为 3 时:左子树有节点 1 和 2(G(2) = 2),右子树为空(G(0) = 1),所以有 2 * 1 = 2 种情况

总共有 2 + 1 + 2 = 5 种不同的二叉搜索树。

代码实现

C#

public class Solution {
    public int NumTrees(int n) {
        // 创建动态规划数组
        int[] dp = new int[n + 1];
        
        // 初始化边界条件
        dp[0] = 1;
        
        // 填充dp数组
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= i; j++) {
                // 对于根节点j,左子树节点个数为j-1,右子树节点个数为i-j
                dp[i] += dp[j - 1] * dp[i - j];
            }
        }
        
        return dp[n];
    }
}

Python

class Solution:
    def numTrees(self, n: int) -> int:
        # 创建动态规划数组
        dp = [0] * (n + 1)
        
        # 初始化边界条件
        dp[0] = 1
        
        # 填充dp数组
        for i in range(1, n + 1):
            for j in range(1, i + 1):
                # 对于根节点j,左子树节点个数为j-1,右子树节点个数为i-j
                dp[i] += dp[j - 1] * dp[i - j]
        
        return dp[n]

C++

class Solution {
public:
    int numTrees(int n) {
        // 创建动态规划数组
        vector<int> dp(n + 1, 0);
        
        // 初始化边界条件
        dp[0] = 1;
        
        // 填充dp数组
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= i; j++) {
                // 对于根节点j,左子树节点个数为j-1,右子树节点个数为i-j
                dp[i] += dp[j - 1] * dp[i - j];
            }
        }
        
        return dp[n];
    }
};

执行结果

C#

  • 执行用时:20 ms,击败了 95.24% 的 C# 提交
  • 内存消耗:25.4 MB,击败了 85.71% 的 C# 提交

Python

  • 执行用时:32 ms,击败了 91.67% 的 Python3 提交
  • 内存消耗:14.9 MB,击败了 88.89% 的 Python3 提交

C++

  • 执行用时:0 ms,击败了 100.00% 的 C++ 提交
  • 内存消耗:6.0 MB,击败了 92.31% 的 C++ 提交

代码亮点

  1. 空间优化:我们只使用了一个一维数组来存储动态规划的结果,空间复杂度为 O(n)。
  2. 时间优化:通过动态规划避免了重复计算,时间复杂度为 O(n²)。
  3. 边界处理:正确处理了空树的情况,设置 dp[0] = 1。

常见错误分析

  1. 忽略边界条件:忘记设置 dp[0] = 1 会导致计算错误。
  2. 循环范围错误:内层循环的范围应该是从 1 到 i,而不是从 1 到 n。
  3. 递归实现不加记忆化:如果使用递归方法而不加记忆化,会导致大量重复计算,造成超时。

解法比较

方法时间复杂度空间复杂度优点缺点
动态规划O(n²)O(n)直观易懂,适用于各种编程语言需要额外的空间存储中间结果
卡特兰数O(n)O(1)时间和空间效率更高需要了解卡特兰数的性质,不够直观

相关题目

相关题目

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值