题目描述:
给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 ‘.’ 和 ‘*’ 的正则表达式匹配。
‘.’ 匹配任意单个字符
‘*’ 匹配零个或多个前面的那一个元素
所谓匹配,是要涵盖 整个 字符串 s的,而不是部分字符串。
说明:
s 可能为空,且只包含从 a-z 的小写字母。
p 可能为空,且只包含从 a-z 的小写字母,以及字符 . 和 *。
示例 1:
输入:
s = “aa”
p = “a”
输出: false
解释: “a” 无法匹配 “aa” 整个字符串。
示例 2:
输入:
s = “aa”
p = “a*”
输出: true
解释: 因为 ‘*’ 代表可以匹配零个或多个前面的那一个元素, 在这里前面的元素就是 ‘a’。因此,字符串 “aa” 可被视为 ‘a’ 重复了一次。
示例 3:
输入:
s = “ab”
p = “.*”
输出: true
解释: “.*” 表示可匹配零个或多个(’*’)任意字符(’.’)。
示例 4:
输入:
s = “aab”
p = “c*a*b”
输出: true
解释: 因为 ‘*’ 表示零个或多个,这里 ‘c’ 为 0 个, ‘a’ 被重复一次。因此可以匹配字符串 “aab”。
示例 5:
输入:
s = “mississippi”
p = “mis*is*p*.”
输出: false
题解:
1,动态规划
2,s和p前拼接一个空格字符“ ”
3,dp[0][0] = 1
4,转移方程
怎么想转移方程?首先想的是从已经求出了 dp[i-1][j-1] 入手,再加上已知 s[i]、p[j],要想的问题就是怎么去求 dp[i][j]。
已知 dp[i-1][j-1] 意思就是前面子串都匹配上了,不知道新的一位的情况。
那就分情况考虑,所以对于新的一位 p[j] s[i] 的值不同,要分情况讨论:
1)考虑最简单的 p[j] == s[i] : dp[i][j] = dp[i-1][j-1]
2)然后从 p[j] 可能的情况来考虑,让 p[j]=各种能等于的东西。
a) p[j] == “.” : dp[i][j] = dp[i-1][j-1]
b) p[j] ==" * ":
- 第一个难想出来的点:怎么区分 ∗ 的两种讨论情况
首先给了 ,明白 * 的含义是 匹配零个或多个前面的那一个元素,所以要考虑他前面的元素 p[j-1]。 跟着他前一个字符走,前一个能匹配上 s[i],* 才能有用,前一个都不能匹配上 s[i],* 也无能为力,只能让前一个字符消失,也就是匹配 0次前一个字符。
所以按照 p[j-1] 和 s[i] 是否相等,我们分为两种情况:
- p[j-1] != s[i] : dp[i][j] = dp[i][j-2]
这就是刚才说的那种前一个字符匹配不上的情况。
比如(ab, abc * )。遇到 * 往前看两个,发现前面 s[i] 的 ab 对 p[j-2] 的 ab 能匹配,虽然后面是 c*,但是可以看做匹配 0 次 c,相当于直接去掉 c *,所以也是 True。注意 (ab, abc**) 是 False。 - p[j-1] == s[i] or p[j-1] == “.”:
* 前面那个字符,能匹配 s[i],或者 * 前面那个字符是万能的 .
因为 . * 就相当于 . .,那就只要看前面可不可以匹配就行。
比如 (##b , ###b *),或者 ( ##b , ### . * ) 只看 ### 后面一定是能够匹配上的。所以要看 b 和 b * 前面那部分 ## 的地方匹不匹配。
- 第二个难想出来的点:怎么判断前面是否匹配
dp[i][j] = dp[i-1][j] // 多个字符匹配的情况
or dp[i][j] = dp[i][j-1] // 单个字符匹配的情况
or dp[i][j] = dp[i][j-2] // 没有匹配的情况
看 ### 匹不匹配,不是直接只看 ### 匹不匹配,要综合后面的 b b* 来分析
这三种情况是 or 的关系,满足任意一种都可以匹配上,同时是最难以理解的地方:
dp[i-1][j] 就是看 s 里 b 多不多, ### 和 ###b * 是否匹配,一旦匹配,s 后面再添个 b 也不影响,因为有 * 在,也就是 ###b 和 ###b *也会匹配。
dp[i][j-1] 就是去掉 * 的那部分,###b 和 ###b 是否匹配,比如 qqb qqb
dp[i][j-2] 就是 去掉多余的 b ,p 本身之前的能否匹配,###b 和 ### 是否匹配,比如 qqb qqbb 之前的 qqb qqb 就可以匹配,那多了的 b * 也无所谓,因为 b * 可以是匹配 0 次 b,相当于 b * 可以直接去掉了。
三种满足一种就能匹配上。
class Solution {
public:
bool isMatch(string s, string p) {
s = " " + s;
p = " " + p;
int len1 = s.length(), len2 = p.length();
bool dp[len1+1][len2+1];
memset(dp, 0, (len1+1)*(len2+1));
dp[0][0] = 1;
for(int i=1; i<=len1; i++){
for(int j=1; j<=len2; j++){
if(s[i-1]==p[j-1] || p[j-1]=='.')
dp[i][j] = dp[i-1][j-1];
else if(p[j-1]=='*'){
if(s[i-1]==p[j-2] || p[j-2]=='.')
dp[i][j] = dp[i-1][j] || dp[i][j-1] || dp[i][j-2];
else
dp[i][j] = dp[i][j-2];
}
}
}
return dp[len1][len2];
}
};