ValueError: Invalid type tf.int32 for Mean_7:0, expected: [tf.float32, tf.float64, tf.float16].

本文解析了在使用TensorFlow构建线性模型时遇到的TypeError问题,详细解释了为何初始化变量时应使用浮点数类型,并提供了正确的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

错误原因:
在这里插入图片描述
图中初始化b和k的时候只写了0,应该是0.
因为tf其他包要求是float32或者float64的类型
ValueError: Invalid type tf.int32 for Mean_7:0, expected: [tf.float32, tf.float64, tf.float16].
在这里插入图片描述

代码如下:

import tensorflow as tf
import numpy as np
#使用numpy生成100个随机点
x_data = np.random.rand(100)
y_data = x_data * 0.1 + 0.2

#构造一个线性模型
b = tf.Variable(0)
k = tf.Variable(0)
y = k * x_data + b

#二次代价函数
loss = tf.reduce_mean(tf.square(y_data - y))
#定义一个梯度下降算法来进行训练的优化器
optimizer = tf.train.GradientDescentOptimizer(0.2)
#最小化代价函数
train = optimizer.minimize(loss)

#初始化变量
init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    for step in range(201):
        sess.run(train)
        if step % 20 == 0:
            print(step,sess.run([k,b]))

报错如下:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-10-fe18d1ec80d8> in <module>()
     13 optimizer = tf.train.GradientDescentOptimizer(0.2)
     14 #最小化代价函数
---> 15 train = optimizer.minimize(loss)
     16 
     17 #初始化变量

D:\Anaconda3\lib\site-packages\tensorflow\python\training\optimizer.py in minimize(self, loss, global_step, var_list, gate_gradients, aggregation_method, colocate_gradients_with_ops, name, grad_loss)
    313         aggregation_method=aggregation_method,
    314         colocate_gradients_with_ops=colocate_gradients_with_ops,
--> 315         grad_loss=grad_loss)
    316 
    317     vars_with_grad = [v for g, v in grads_and_vars if g is not None]

D:\Anaconda3\lib\site-packages\tensorflow\python\training\optimizer.py in compute_gradients(self, loss, var_list, gate_gradients, aggregation_method, colocate_gradients_with_ops, grad_loss)
    364                        "Optimizer.GATE_OP, Optimizer.GATE_GRAPH.  Not %s" %
    365                        gate_gradients)
--> 366     self._assert_valid_dtypes([loss])
    367     if grad_loss is not None:
    368       self._assert_valid_dtypes([grad_loss])

D:\Anaconda3\lib\site-packages\tensorflow\python\training\optimizer.py in _assert_valid_dtypes(self, tensors)
    515         raise ValueError(
    516             "Invalid type %r for %s, expected: %s." % (
--> 517                 dtype, t.name, [v for v in valid_dtypes]))
    518 
    519   # --------------

ValueError: Invalid type tf.int32 for Mean_7:0, expected: [tf.float32, tf.float64, tf.float16].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

只会git clone的程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值