6.12使用tensorflow来搭建一个Transformer

本文详细介绍了如何使用Tensorflow构建Transformer模型,包括位置嵌入、Mask编码、self-attention、多头注意力、前馈网络、编码器和解码器的构建。同时,文章涵盖了机器翻译任务的实现,包括数据预处理、模型训练和评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import tensorflow_datasets as tfds
import tensorflow as tf

import time
import numpy as np
import matplotlib.pyplot as plt

transformer模型结构

位置嵌入

因为不像RNN那样是按顺序处理输入,RNN有每个token的位置信息。而transformer是并行运行,这里要

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

炫云云

你的鼓励是我创作最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值