24 Bayes判别

本文详细探讨了Bayes判别方法,包括错判风险最小化准则,两个及多个总体的Bayes判别定理。在两个正太总体的情况下,给出了具体的判别区域表达式,并进一步扩展到多个总体的Bayes判别,讨论了损失相同情况下的特殊情况。内容涵盖概率论、统计学和机器学习中的关键概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💖💖感谢各位观看这篇文章,💖💖点赞💖💖、收藏💖💖、你的支持是我前进的动力!💖💖

💖💖感谢你的阅读💖,专栏文章💖持续更新!💖关注不迷路!!💖

Bayes判别

1 错判风险ECM最小准则

定义:Bayes判别规则

  • 条件
    m 个 正 太 总 体 G 1 , ⋯   , G m ; 密 度 函 数 f 1 ( x ) , ⋯   , f m ( x ) m 个 个 体 各 自 发 生 的 先 验 概 率 q 1 , ⋯   , q m 错 判 损 失 C ( j ∣ i ) , 错 判 矩 阵 C ( R ) 错 判 概 率 P ( j ∣ i , R ) = ∫ R j f i ( x ) d ( x ) 总 平 均 错 判 损 失 : E C M ( R ) = ∑ i = 1 m q i ∑ j = 1 m C ( j ∣ i ) P ( j ∣
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

炫云云

你的鼓励是我创作最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值