大语言模型(Large Language Model,LLM)是一种基于深度学习技术的人工智能模型,旨在理解和生成人类语言。以下是大语言模型的详细介绍:
一、基本概念
大语言模型通常包含数百亿甚至数千亿个参数,通过在海量文本数据上进行训练,学习语言的语法、语义和上下文信息。它们的核心目标是生成连贯且上下文相关的语言内容,并在多种自然语言处理(NLP)任务中表现出色。
二、发展历程
-
统计语言模型:早期基于马尔可夫假设的n-gram模型,受限于上下文长度和统计特性。
-
神经语言模型:如循环神经网络(RNN)和长短期记忆网络(LSTM),能够捕捉长距离依赖关系。
-
预训练语言模型:如BERT和GPT-1,基于Transformer架构,通过无监督学习在大规模语料上预训练,然后在特定任务上微调。
-
大型语言模型(LLM):以GPT-3、PaLM、LLaMA等为代表,参数规模巨大,展现出强大的涌现能力。
三、技术架构
大语言模型主要基于一种叫做Transformer的架构,它通过自注意力机制(Self-Attention)来处理序列数据。这种机制让模型能够同时关注输入文本中的多个部分,从而更好地理解上下文关系。训练过程中,模型通过优化目标(如预测下一个单词)来学习语言模式。
-
Transformer架构:是现代大语言模型的基础,通过自注意力机制捕捉长距离依赖关系。
-
预归一化和激活函数:如LLaMA采用预归一化和SwiGLU激活函数,提升训练稳定