客服工单业务背景
在银行业的客户服务领域,工单处理是座席客服日常工作中不可或缺且较为耗时的一个环节,其效率直接影响到客户服务体验与运营效率。传统工单处理模式,主要是座席结合实际通话内容进行人工总结后填写,这种模式存在的显著痛点如下。
1. 手工录入繁琐耗时耗力。整通工单受理通话内容往往较长,需要记录的要素信息较大,如工单类型、客户问题、客户诉求描述等大量信息都依赖人工手动录入,不仅耗时、降低了座席的工作效率,还可能因人为因素导致工单填写信息的不准确或遗漏,影响后续问题的跟踪和解决。
2. 标准化、结构化程度低。不同座席员的工单填写习惯和风格差异较大,导致工单质量参差不齐,而且填写工单内容非结构化,难以进行后续的有效数据分析和流程优化。
3. 无法满足客户实时需求。传统工单处理模式的响应效率低下,无法满足客户对于快速解决问题的需求,影响客户满意度。
此外,随着银行业务规模的扩大,以及客户需求和银行服务模式的日益多元化,客户电话咨询数量也在不断增加,基于人工的工单受理填写模式更加凸显其局限性,成为制约银行客服系统高效运作的一大痛点。另外,随着大模型技术的不断演进及其出色的能力,正驱使客服行业出现一定的变革和转型,尤其在银行业客服这一细分领域,展现了一定的融合趋势与广阔的应用前景。大模型技术的引入,可以在一定程度提供更高效、更智能且更个性化的客户服务体验,从而提升客户满意度与业务运营效率。因此,基于大模型生成技术和强大的能力,为了进一步节省填单时间,减少电话座席的填单压力,探索并实施工单自动