本文研究平面、空间直线在参数方程形式下,切线斜率(即导数)如何表示的问题。
如上图所示。设y=f(x),x=φ(t),y=ψ(t)当t=t0时,x=x0,y=y0,即点A坐标为(x0,y0)点A处的导数f′(x0)=limΔx→0ΔyΔx=limΔt→0ψ(t0+Δt)−ψ(t0)φ(t0+Δt)−φ(t0) =limΔt→0ψ(t0+Δt)−ψ(t0)Δt/φ(t0+Δt)−φ(t0)Δt =limΔt→0ψ(t0+Δt)−ψ(t0)Δt/limΔt→0φ(t0+Δt)−φ(t0)Δt =ψ′(t0)φ′(t0) 因此点A处的切线向量可表示为(ψ′(t0),φ′(t0))而切线方程为y−y0=ψ′(t0)φ′(t0)(x−x0),即y−y0ψ′(t0)=x−x0φ′(t0) 同理可得空间直线的点向式方程为:y−y0ψ′(t0)=x−x0φ′(t0)=z−z0ω′(t0)
如上图所示。\\
设y=f(x),x=\varphi(t),y=\psi(t) \\
当t=t_0时,x=x_0,y=y_0,即点A坐标为(x_0,y_0) \\
点A处的导数f^\prime(x_0)=\lim_{\Delta x \to 0}\frac{\Delta y}{\Delta x}=\lim_{\Delta t \to 0}\frac{\psi(t_0+\Delta t)-\psi(t_0)}{\varphi(t_0+\Delta t)-\varphi(t_0)} \\
\,\\
=\lim_{\Delta t \to 0}\frac{\psi(t_0+\Delta t)-\psi(t_0)}{\Delta t}/\frac{\varphi(t_0+\Delta t)-\varphi(t_0)}{\Delta t} \\
\,\\
=\lim_{\Delta t \to 0}\frac{\psi(t_0+\Delta t)-\psi(t_0)}{\Delta t}/\lim_{\Delta t \to 0}\frac{\varphi(t_0+\Delta t)-\varphi(t_0)}{\Delta t} \\
\,\\
=\frac{\psi^\prime(t_0)}{\varphi^\prime(t_0)} \\
\,\\
因此点A处的切线向量可表示为(\psi^\prime(t_0),\varphi^\prime(t_0)) \\
而切线方程为y-y_0=\frac{\psi^\prime(t_0)}{\varphi^\prime(t_0)}(x-x_0),即\frac{y-y_0}{\psi^\prime(t_0)}=\frac{x-x_0}{\varphi^\prime(t_0)} \\
\,\\
同理可得空间直线的点向式方程为:\\
\frac{y-y_0}{\psi^\prime(t_0)}=\frac{x-x_0}{\varphi^\prime(t_0)}=\frac{z-z_0}{\omega^\prime(t_0)}
如上图所示。设y=f(x),x=φ(t),y=ψ(t)当t=t0时,x=x0,y=y0,即点A坐标为(x0,y0)点A处的导数f′(x0)=Δx→0limΔxΔy=Δt→0limφ(t0+Δt)−φ(t0)ψ(t0+Δt)−ψ(t0)=Δt→0limΔtψ(t0+Δt)−ψ(t0)/Δtφ(t0+Δt)−φ(t0)=Δt→0limΔtψ(t0+Δt)−ψ(t0)/Δt→0limΔtφ(t0+Δt)−φ(t0)=φ′(t0)ψ′(t0)因此点A处的切线向量可表示为(ψ′(t0),φ′(t0))而切线方程为y−y0=φ′(t0)ψ′(t0)(x−x0),即ψ′(t0)y−y0=φ′(t0)x−x0同理可得空间直线的点向式方程为:ψ′(t0)y−y0=φ′(t0)x−x0=ω′(t0)z−z0
专题:平面、空间直线参数方程下的切线斜率问题
于 2023-08-27 11:45:03 首次发布