前言
在人工智能的宏伟蓝图中,大语言模型(LLM)的预训练是构筑智慧之塔的基石。预训练过程通过调整庞大参数空间以吸纳数据中蕴含的知识,为模型赋予从语言理解到文本生成等多样化能力。本文将深入探讨预训练过程中的技术细节、所面临的挑战、通信机制、并行化策略以及如何通过这些技术的融合提升预训练的效率和性能。
一、预训练流程分析
预训练大语言模型涉及对海量参数的优化。这个过程起始于一个简单的前提:
给定输入(X)和相应的输出(Y),模型通过不断迭代学习,不断更新修改参数,使得其生成的输出尽可能接近真实结果(Y)。
当模型输出与实际结果之间的差距—通常由损失函数量化—减小到一个可接受的阈值时,我们可以认为预训练过程达到预期效果。在这个过程中,模型参数经历从随机初始化到精细调整的转变,逐步捕捉并内化语言的复杂规律。
大语言模型预训练过程核心:
1)输入 Batch 数据
2)前向传播计算损失
3)后向传播计算梯度
4)优化器更新大模型参数
5)反复迭代循环