AI大模型探索之路-训练篇2:大语言模型预训练基础认知

本文详细探讨了大语言模型预训练过程,包括其核心步骤、面临的显存和计算效率挑战,以及网络通信、数据并行、模型并行和3D并行策略。特别介绍了MicrosoftDeepSpeed和NVIDIAMegatron等工具在优化训练中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

在人工智能的宏伟蓝图中,大语言模型(LLM)的预训练是构筑智慧之塔的基石。预训练过程通过调整庞大参数空间以吸纳数据中蕴含的知识,为模型赋予从语言理解到文本生成等多样化能力。本文将深入探讨预训练过程中的技术细节、所面临的挑战、通信机制、并行化策略以及如何通过这些技术的融合提升预训练的效率和性能。

一、预训练流程分析

预训练大语言模型涉及对海量参数的优化。这个过程起始于一个简单的前提:

给定输入(X)和相应的输出(Y),模型通过不断迭代学习,不断更新修改参数,使得其生成的输出尽可能接近真实结果(Y)。

当模型输出与实际结果之间的差距—通常由损失函数量化—减小到一个可接受的阈值时,我们可以认为预训练过程达到预期效果。在这个过程中,模型参数经历从随机初始化到精细调整的转变,逐步捕捉并内化语言的复杂规律。
在这里插入图片描述

大语言模型预训练过程核心:
1)输入 Batch 数据
2)前向传播计算损失
3)后向传播计算梯度
4)优化器更新大模型参数
5)反复迭代循环

评论 98
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寻道AI小兵

🐳 感谢你的巨浪支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值