AI大模型探索之路-训练篇19:大语言模型预训练-微调技术之Prefix Tuning

### 如何对大语言模型进行微调 #### 微调的概念与流程 微调大型语言模型(LLMs)通常分为两个阶段:预训练和特定任务的微调。在预训练阶段,模型通过大量的无标签数据学习通用的语言表示;而在微调阶段,则利用特定领域的有标注数据进一步调整模型参数,使其适应具体应用场景[^3]。 #### 常见的技术方法 对于大规模语言模型而言,传统的全量微调方式存在显著的资源消耗问题。因此,近年来发展出了多种高效的微调技术,其中最具代表性的包括: 1. **低秩分解适配器 (Low-Rank Adaptation, LoRA)** LoRA 方法的核心思想是对模型权重矩阵施加低秩约束,在不改变原模型架构的情况下仅更新少量新增参数。这种方法极大地减少了需要优化的参数数量,同时保留了原有模型的知识[^4]。 2. **前缀调节 (Prefix Tuning)** 这种策略引入了一个可学习的连续向量序列作为输入的一部分附加到每层 Transformer 的隐藏状态之前。相比直接修改整个网络中的所有权重,只训练这部分额外加入的内容更加节省计算资源[^2]。 3. **提示学习 (Prompt Learning)** 提示学习通过设计特殊的模板或者上下文来引导 LLM 完成指定任务,而无需对其内部结构做任何改动。这种方式特别适合那些希望快速部署解决方案而又不想投入过多时间精力去定制化开发的企业用户群体。 #### 实践指南 以下是基于 PyTorch 框架的一个简单例子展示如何应用 PEFT 中的一种——LoRA 来完成 BERT 模型上的分类任务: ```python from transformers import BertForSequenceClassification, Trainer, TrainingArguments import torch def apply_lora(model): for name, param in model.named_parameters(): if 'q_proj' in name or 'v_proj' in name: # Apply to query and value projections. layer_name = '.'.join(name.split('.')[:-1]) lora_layer = LinearWithAdapters(param.shape[-1], param.shape[0], r=8) setattr(eval(f'model.{layer_name}'), name.split('.')[-1], lora_layer) model = BertForSequenceClassification.from_pretrained('bert-base-uncased') apply_lora(model) training_args = TrainingArguments(output_dir='./results', num_train_epochs=3, per_device_train_batch_size=16,) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=val_dataset, ) trainer.train() ``` 此脚本展示了怎样给标准 Hugging Face Transformers 库里的 `BertForSequenceClassification` 添加 LoRA 层次,并随后使用常规的方式继续训练过程。 ---
评论 107
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寻道AI小兵

🐳 感谢你的巨浪支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值