【GitHub开源AI精选】Crawl4AI:LLM专属极速开源爬虫利器、1秒处理百万级数据

系列篇章💥

No.文章
1【GitHub开源AI精选】LLM 驱动的影视解说工具:Narrato AI 一站式高效创作实践
2【GitHub开源AI精选】德国比勒费尔德大学TryOffDiff——高保真服装重建的虚拟试穿技术新突破
3【GitHub开源AI精选】哈工大(深圳)& 清华力作 FilmAgent:剧本自动生成 + 镜头智能规划,开启 AI 电影制作新时代
4【GitHub开源AI精选】Lumina - Image 2.0 文生图模型,以小参数量实现高分辨率多图生成新突破
5【GitHub开源AI精选】探索 Mobile-Agent:X-PLUG 推出的创新型移动智能操作代理
6【GitHub开源AI精选】吴恩达团队开源VisionAgent:用自然语言开启计算机视觉新时代
7【GitHub开源AI精选】Oumi:一站式AI开发平台,涵盖训练、评估与部署全流程
8【GitHub开源AI精选】深入剖析RealtimeSTT:开源实时语音转文本库的强大功能与应用
9【GitHub开源AI精选】PodAgent:多智能体协作播客生成框架,自动化打造高质量播客,赋能内容创作与品牌传播
10【GitHub开源AI精选】OpenManus开源AI工具:3小时复刻Manus,39.5k星
11【GitHub开源AI精选】OpenGlass:大模型赋能的开源方案,25美元打造智能眼镜,支持语音控制+AR叠加
12【GitHub开源AI精选】AppAgentX:西湖大学发布可自主进化的手机智能体,实现GUI操作的高效与智能
13【GitHub开源AI精选】Agent-S架构揭秘:低代码+多模态融合的智能体新范式
14【GitHub开源AI精选】Open-Interface:大模型驱动的计算机“自动驾驶”系统|自然语言操控的自动化工具
15【GitHub开源AI精选】2025年AI工程师必备!AgentOps五大功能重构智能体开发流程
16【GitHub开源AI精选】LangManus:社区驱动的多智能体AI自动化框架,开启复杂任务处理新纪元
17【GitHub开源AI精选】autoMate:AI 驱动的本地自动化助手,用自然语言解锁高效办公,让电脑任务自己动起来
18【GitHub开源AI精选】Sitcom-Crafter:北航联合港中文等高校打造的剧情驱动3D动作生成系统
19【GitHub开源AI精选】Local Deep Researcher:本地化部署的AI研究助手,零门槛开启智能研究
20【GitHub开源AI精选】Browser Use:开源AI自动化工具,让AI像人类一样操控网页
21【GitHub开源AI精选】LLaVA-Med:微软打造的生物医学领域多模态AI助手,助力医疗智能化
22【GitHub开源AI精选】RF-DETR:Roboflow 的实时目标检测模型『边缘设备鹰眼』,低至160FPS的工业级检测利器
23【GitHub开源AI精选】MegaTTS 3:字节跳动开源语音利器,吊打VALL-E,自然度逼近真人录音
24【GitHub开源AI精选】LocAgent:斯坦福联合耶鲁大学等机构推出的代码问题定位智能体
25【GitHub开源AI精选】WhisperX:70倍实时语音转录!革命性词级时间戳与多说话人分离技术
26【GitHub开源AI精选】Crawl4AI:LLM专属极速开源爬虫利器、1秒处理百万级数据


前言

在当今AI时代,数据无疑是驱动人工智能发展的核心资源,如何高效、精准地获取和处理网络数据成为关键。Crawl4AI一个开源的AI友好型网络爬虫工具,以其卓越的性能、丰富的功能和灵活的部署方式,为开发者提供了一个强大的数据采集解决方案。本文将深入探讨Crawl4AI的核心优势、应用场景、技术亮点以及安装部署方式,并通过丰富的实践案例,帮助读者全面了解并快速上手这一实用工具。

一、项目概述

Crawl4AI是一个专为AI场景设计的开源爬虫工具,它以惊人的速度和效率,为大型语言模型(LLM)、AI代理和数据管道提供AI就绪的网络爬取服务。作为GitHub上的热门项目,Crawl4AI不仅功能强大,而且易于部署,其核心优势在于为开发者提供无与伦比的速度、精确度和部署便捷性。
在这里插入图片描述

二、为什么选择Crawl4AI

Crawl4AI的优势体现在多个方面,使其在众多爬虫工具中脱颖而出:

  • 为LLM量身定制:Crawl4AI专注于创建智能、简洁的Markdown格式输出,优化用于RAG(检索增强生成)和微调应用。这种格式便于AI模型直接使用,有效提升数据处理效率。
  • 极速性能:通过先进的技术架构和算法优化,Crawl4AI在数据采集速度上表现出色,能够以6倍于传统工具的速度完成任务,极大地提高了工作效率。
  • 灵活的浏览器控制:Crawl4AI提供了全面的浏览器管理功能,包括会话管理、代理支持以及自定义钩子等,确保开发者能够轻松应对各种复杂的网络爬虫场景,实现无缝的数据访问。
  • 启发式智能算法:Crawl4AI运用先进的启发式算法,实现高效的内容提取,减少了对昂贵AI模型的依赖,降低了数据处理成本。
  • 开源与可部署性:Crawl4AI完全开源,无需API密钥,支持Docker和云集成,方便开发者根据自身需求进行灵活部署,无论是本地环境还是云端服务器,都能轻松适应。

三、应用场景

Crawl4AI的应用场景非常广泛,适用于多种数据采集和处理需求:

1、AI模型训练数据收集

Crawl4AI可以为自然语言处理(NLP)模型收集大规模文本数据,或者为计算机视觉(CV)模型采集图片数据,为AI模型的训练提供丰富的素材。例如,在训练一个新闻情感分析模型时,可通过Crawl4AI从各大新闻网站批量抓取新闻文章及其评论内容。

2、实时数据监控

通过Crawl4AI,可以实时监控电子商务网站的价格波动,或者社交媒体上的热门话题,及时获取市场动态和用户反馈。比如,电商从业者可利用它监控竞品价格变化,及时调整自身商品定价策略;社交媒体运营者能实时追踪话题热度,掌握用户舆论走向。

3、内容聚合平台构建

Crawl4AI能够整合分散在不同网站上的行业信息,构建知识图谱,为企业决策和市场分析提供有力支持。以金融行业为例,可将分散在各类财经资讯网站、公司年报官网的信息进行整合,为投资决策提供全面的数据支撑 。

四、技术亮点

1、Markdown生成

Crawl4AI能够生成干净、结构化的Markdown文档,通过启发式过滤去除噪声和无关内容,同时支持BM25算法过滤,确保提取的核心信息精准、简洁。例如,在爬取新闻网页时,可自动过滤掉广告、导航栏等无关信息,仅保留正文内容,并转换为Markdown格式。此外,用户还可以自定义Markdown生成策略,以满足特定需求。

2、结构化数据提取

Crawl4AI支持使用所有大型语言模型(LLM)进行结构化数据提取,无论是开源模型还是商业模型都能完美兼容。它实现了基于主题、正则表达式和句子级别的内容分块策略,并运用余弦相似性算法,根据用户查询语义提取相关内容。比如,在爬取电商商品页面时,可通过定义数据模型和提取指令,借助LLM提取商品名称、价格、规格等结构化数据。

3、浏览器集成

Crawl4AI提供了全面的浏览器控制功能,支持多种浏览器类型,如Chromium、Firefox和WebKit。它可以模拟真实用户的浏览行为,避免被网站识别为爬虫。此外,Crawl4AI还支持远程浏览器控制、浏览器个人资料管理、会话保持和代理支持等高级功能。例如,通过设置代理IP,可绕过网站的访问限制,实现高效爬取。

4、动态内容爬取

对于包含大量动态内容的网页,Crawl4AI能够执行JavaScript脚本,等待异步或同步操作完成后再进行数据提取。它还可以在爬取过程中捕获页面截图,方便开发者进行调试和分析。比如,在爬取包含“加载更多”按钮的网页时,可通过执行JavaScript代码模拟点击操作,加载完整内容后再进行数据提取。

五、安装与部署

1、安装crawl4ai

这是最便捷的安装方式,适合基本的网络爬虫和数据采集任务。只需在命令行中运行以下命令即可完成安装:

pip install crawl4ai
crawl4ai-setup # 进行浏览器设置

2、基础网页抓取

使用Crawl4AI进行基础网页抓取非常简单。以下是一个示例代码:

import asyncio
from crawl4ai import AsyncWebCrawler

async def main():
    async with AsyncWebCrawler() as crawler:
        result = await crawler.arun(
            url="https://www.nbcnews.com/business",
        )
        print(result.markdown)

if __name__ == "__main__":
    asyncio.run(main())

这段代码将异步地从目标URL获取网页内容,并以Markdown格式输出。

3、命令行界面(CLI)使用

Crawl4AI还提供了方便的命令行界面(CLI),让用户可以快速进行网络爬虫操作。以下是一些常见的CLI命令:

# 基础爬取,输出Markdown格式
crwl https://www.nbcnews.com/business -o markdown

# 深度爬取,采用BFS策略,最多爬取10页
crwl https://docs.crawl4ai.com --deep-crawl bfs --max-pages 10

# 使用LLM提取特定信息,如产品价格
crwl https://www.example.com/products -q "Extract all product prices"

这些命令可以帮助用户快速完成各种爬取任务,无需编写复杂的Python代码。

4、高级用法示例

1)动态内容处理示例

对于包含动态加载内容的网页,Crawl4AI提供了多种处理方式。例如,通过执行JavaScript代码模拟点击“Load More”按钮来加载更多内容:

async def crawl_dynamic_content():
    js_code = [
        "const loadMoreButton = Array.from(document.querySelectorAll('button')).find(button => button.textContent.includes('Load More')); loadMoreButton && loadMoreButton.click();"
    ]
    async with AsyncWebCrawler(verbose=True) as crawler:
        result = await crawler.arun(
            url="https://www.nbcnews.com/business",
            js_code=js_code,
            bypass_cache=True,
        )
        print(result.markdown.raw_markdown[:500])  
asyncio.run(crawl_dynamic_content())

2)链接分析与智能过滤示例

Crawl4AI可对网页中的链接进行分析和过滤,区分内部链接和外部链接,并可根据需求排除特定类型的链接:

async def link_analysis():
    async with AsyncWebCrawler() as crawler:
        result = await crawler.arun(
            url="https://www.nbcnews.com/business",
            bypass_cache=True,
            exclude_external_links=True,
            exclude_social_media_links=True,
        )
        print(f"Found {len(result.links['internal'])} internal links")
        print(f"Found {len(result.links['external'])} external links")

        for link in result.links['internal'][:5]:
            print(f"Href: {link['href']}\nText: {link['text']}\n")

asyncio.run(link_analysis())

3)LLM提取结构化数据示例

以OpenAI定价页面为例,通过定义数据模型和提取指令,使用LLM进行数据提取:

from crawl4ai.extraction_strategy import LLMExtractionStrategy
from pydantic import BaseModel, Field
import os, json

class OpenAIModelFee(BaseModel):
    model_name: str = Field(..., description="Name of the OpenAI model.")
    input_fee: str = Field(..., description="Fee for input token for the OpenAI model.")
    output_fee: str = Field(
       ..., description="Fee for output token for the OpenAI model."
    )

async def extract_structured_data_using_llm(provider: str, api_token: str = None, extra_headers: dict = None):
    print(f"\n--- Extracting Structured Data with {provider} ---")
    if api_token is None and provider != "ollama":
        print(f"API token is required for {provider}. Skipping this example.")
        return

    extra_args = {"extra_headers": extra_headers} if extra_headers else {}

    async with AsyncWebCrawler(verbose=True) as crawler:
        result = await crawler.arun(
            url="https://openai.com/api/pricing/",
            word_count_threshold=1,
            extraction_strategy=LLMExtractionStrategy(
                provider=provider,
                api_token=api_token,
                schema=OpenAIModelFee.schema(),
                extraction_type="schema",
                instruction="""Extract all model names along with fees for input and output tokens."                 "{model_name: 'GPT-4', input_fee: 'US$10.00 / 1M tokens', output_fee: 'US$30.00 / 1M tokens'}.""",
                **extra_args
            ),
            bypass_cache=True,
        )
        print(json.loads(result.extracted_content)[:5]) 

六、总结

Crawl4AI作为一款开源的AI友好型爬虫工具,凭借其为LLM定制的输出格式、极速性能、灵活的浏览器控制、启发式智能算法以及开源可部署的特性,在网络数据采集领域展现出强大的竞争力。无论是基础的网页抓取,还是复杂的动态内容处理、结构化数据提取,Crawl4AI都能提供高效、便捷的解决方案。通过丰富的实践案例,我们详细展示了其从基础到高级的用法,希望读者能够借此快速掌握Crawl4AI的核心功能,在数据采集和AI应用开发中充分发挥其价值 。随着AI技术的不断发展,相信Crawl4AI也将持续迭代,为开发者带来更多实用的功能和更优质的体验。

项目地址:https://github.com/unclecode/crawl4ai


在这里插入图片描述

🎯🔖更多专栏系列文章:AI大模型提示工程完全指南AI大模型探索之路(零基础入门)AI大模型预训练微调进阶AI大模型开源精选实践AI大模型RAG应用探索实践🔥🔥🔥 其他专栏可以查看博客主页📑

😎 作者介绍:资深程序老猿,从业10年+、互联网系统架构师,目前专注于AIGC的探索(CSDN博客之星|AIGC领域优质创作者)
📖专属社群:欢迎关注【小兵的AI视界】公众号或扫描下方👇二维码,回复‘入群’ 即刻上车,获取邀请链接。
💘领取三大专属福利:1️⃣免费赠送AI+编程📚500本,2️⃣AI技术教程副业资料1套,3️⃣DeepSeek资料教程1套🔥(限前500人)
如果文章内容对您有所触动,别忘了点赞、⭐关注,收藏!加入我们,一起携手同行AI的探索之旅,开启智能时代的大门!

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寻道AI小兵

🐳 感谢你的巨浪支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值