Python从0到100(五十二):机器学习-逻辑回归及鸢尾花数据集预测

在这里插入图片描述逻辑回归是⼀种⽤于解决⼆分类问题的监督学习算法,其基本原理是使⽤ 逻辑函数(也称为Sigmoid函数) 来建模
因变量(输出)与⾃变量(输⼊)之间的概率关系。逻辑回归的⽬标是估计某个事件发⽣的概率,通常表示为0或
1,例如肿瘤是恶性(1)或良性(0)。

1.基本原理

逻辑回归基于以下思想:我们希望将线性组合的输出映射到⼀个介于0和1之间的概率值,以表示事件发⽣的可能性。为此,逻辑回归使⽤逻辑函数(Sigmoid函数)来执⾏这种映射。
逻辑回归的基本原理如下:

  1. 假设数据服从⼀个二项分布。
  2. 使⽤线性回归模型的线性组合来建模数据的对数⼏率。
  3. 对线性组合应⽤逻辑函数(Sigmoid函数),将连续的输出转换为概率值。
  4. 根据概率值进⾏分类,通常设置⼀个阈值来决定类别。

2.公式模型

逻辑回归的核⼼公式可以表示为:
在这里插入图片描述
在这个公式中:

  • P(y=1|X)是事件发⽣的概率,也就是因变量(输出)等于1的概率。<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是Dream呀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值