逻辑回归是⼀种⽤于解决⼆分类问题的监督学习算法,其基本原理是使⽤ 逻辑函数(也称为Sigmoid函数) 来建模
因变量(输出)与⾃变量(输⼊)之间的概率关系。逻辑回归的⽬标是估计某个事件发⽣的概率,通常表示为0或
1,例如肿瘤是恶性(1)或良性(0)。
1.基本原理
逻辑回归基于以下思想:我们希望将线性组合的输出映射到⼀个介于0和1之间的概率值,以表示事件发⽣的可能性。为此,逻辑回归使⽤逻辑函数(Sigmoid函数)来执⾏这种映射。
逻辑回归的基本原理如下:
- 假设数据服从⼀个二项分布。
- 使⽤线性回归模型的线性组合来建模数据的对数⼏率。
- 对线性组合应⽤逻辑函数(Sigmoid函数),将连续的输出转换为概率值。
- 根据概率值进⾏分类,通常设置⼀个阈值来决定类别。
2.公式模型
逻辑回归的核⼼公式可以表示为:
在这个公式中:
P(y=1|X)
是事件发⽣的概率,也就是因变量(输出)等于1的概率。<