学习线性变换,老是被各种矩阵,各种向量整蒙了,在历史中,线性变换的由来非常有条理性,理解起来也不是很难,只是在现在的教课书中,这一节,被简写了,被我忽视了,回头再看看,就可以理解了。
咱们再出发,回到古典的数学问题中,我们一步步引入线性变换:
现实问题(鸡兔同笼):
有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有多少只鸡和兔?
古人想到了很多解题办法,我们举个例子:
假设法
假设全是鸡:2×35=70(只)
鸡脚比总脚数少:94-70=24 (只)
兔子比鸡多的脚数:4-2=2(只)
兔子的只数:24÷2=12 (只)
鸡的只数:35-12=23(只)
假设全是兔子:4×35=140(只)
兔子脚比总数多:140-94=46(只)
兔子比鸡多的脚数:4-2=2(只)
鸡的只数:46÷2=23(只)
兔子的只数:=35-23=12(只)
函数出现:
在200年前,有个伟大的数学家,发明了一种巧妙的数学方法解决类似问题
设鸡有x只,兔有y只。则 x+y=35 ; 2x+4y=94 ;
中学我们学过消元法,最终答案与假设法一直
行列式
又有了一个数学家,发现一个规律,这类方程的解,就