数学思维系列(二)线性变换

这篇博客通过解析鸡兔同笼问题,逐步引导读者理解线性变换的概念。从假设法解决问题,到200年前的数学家引入消元法,再到行列式的发现,最后阐述了线性变换如何描述二维图形的拉伸和压缩,揭示了其与矩阵的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习线性变换,老是被各种矩阵,各种向量整蒙了,在历史中,线性变换的由来非常有条理性,理解起来也不是很难,只是在现在的教课书中,这一节,被简写了,被我忽视了,回头再看看,就可以理解了。

咱们再出发,回到古典的数学问题中,我们一步步引入线性变换:

现实问题(鸡兔同笼):

有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有多少只鸡和兔?

古人想到了很多解题办法,我们举个例子:

假设法

    假设全是鸡:2×35=70(只)
    鸡脚比总脚数少:94-70=24 (只)
    兔子比鸡多的脚数:4-2=2(只)
    兔子的只数:24÷2=12 (只)
    鸡的只数:35-12=23(只)


    假设全是兔子:4×35=140(只)
    兔子脚比总数多:140-94=46(只)
    兔子比鸡多的脚数:4-2=2(只)
    鸡的只数:46÷2=23(只)
    兔子的只数:=35-23=12(只)

 

函数出现:

在200年前,有个伟大的数学家,发明了一种巧妙的数学方法解决类似问题

设鸡有x只,兔有y只。则 x+y=35 ; 2x+4y=94 ;

中学我们学过消元法,最终答案与假设法一直

 

行列式

又有了一个数学家,发现一个规律,这类方程的解,就

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值