图像处理:Hough变换原理分析

本文深入探讨了Hough变换的原理及其在图像处理中的应用。通过介绍直线的不同表示方法,详细阐述了Hough变换的提出,特别是在极坐标系中的意义。文章通过构建Hough变换的表格,解释了如何通过该变换找到图像中的直线。最后,文中给出了使用Python实现Hough变换的代码示例,并展示了实验效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、前言

二、直线函数的形式化表示

2.1 直线被方程表示

2.2 直线被图表表示

2.3 直线的表格表示

三、hough变换的提出

3.1 极坐标表示点和线

四、 hough变换的原理

4.1 极坐标的​编辑表格

 4.2 用​编辑平面表示:过任意点P(x,y)做所有射线,其过原点的垂足点的轨迹

4.3 构建hough算法表格( 在​编辑图)

五、图像处理中,Hough变换如何应用

5.1 python程序代码

5.2 实验和效果1:输入直线图片

5.3 实验效果2:输入一个点


一、前言

        别看Hough变换似乎简单,但是,不发挥一下数学理论的功力是不可能理解的;本人早十几年前就用Hough,也一直想写Hough变换,但一懒就是10几年,乘春节前有空,就将Hough的详细细节揭秘出来,供大家参考。

二、直线函数的形式化表示

        我们常用的二维坐标空间是笛卡尔空间,这一般无需强调;问题是对于同一个事物(比如直线)有无其它表述方式,有,并且很多。

2.1 直线被方程表示

在直角坐标系,任意一条直线的方程是

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值