目录
一、提要
大津法(OTSU)是一种确定图像二值化分割阈值的算法,由日本学者大津于1979年提出。从大津法的原理上来讲,该方法又称作最大类间方差法,因为按照大津法求得的阈值进行图像二值化分割后,前景与背景图像的类间方差最大(何为类间方差?原理中有介绍)。
· 在最简单的形式中,该算法返回一个单一的强度阈值,将像素分为前景和背景两类。这个阈值是通过最小化类内强度方差来确定的,或者等效地,通过最大化类间方差来确定。 [2] Otsu 方法是 Fisher 判别分析的一维离散模拟,与 Jenks 优化方法有关,相当于对强度直方图执行的全局最优 k-means[3]。在原始论文中描述了多级阈值的扩展,[2] 并且已经提出了计算高效的实现。
二、算法原理
对于图像I(x,y),前景(即目标)和背景的分割阈值记作T,属于前景的像素点数占整幅图像的比例记为ω0,其平均灰度μ0;背景像素点数占整幅图像的比例为ω1,其平均灰度为μ1。图像的总平均灰度记为μ,类间方差记为g。
&nbs