图像处理的OTSU算法

146 篇文章 ¥39.90 ¥99.00
43 篇文章 ¥29.90 ¥99.00
本文介绍了大津法(OTSU)算法,一种用于图像二值化分割的阈值确定方法。通过最大化类间方差来找到最佳阈值,从而实现前景与背景的最佳分离。内容包括算法原理、代码示例及效果展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、提要

二、算法原理

三、代码示例

四、效果展示

4.1 原图输入

 4.2 结果输出


一、提要

        大津法(OTSU)是一种确定图像二值化分割阈值的算法,由日本学者大津于1979年提出。从大津法的原理上来讲,该方法又称作最大类间方差法,因为按照大津法求得的阈值进行图像二值化分割后,前景与背景图像的类间方差最大(何为类间方差?原理中有介绍)。

·        在最简单的形式中,该算法返回一个单一的强度阈值,将像素分为前景和背景两类。这个阈值是通过最小化类内强度方差来确定的,或者等效地,通过最大化类间方差来确定。 [2] Otsu 方法是 Fisher 判别分析的一维离散模拟,与 Jenks 优化方法有关,相当于对强度直方图执行的全局最优 k-means[3]。在原始论文中描述了多级阈值的扩展,[2] 并且已经提出了计算高效的实现。

二、算法原理

        对于图像I(x,y),前景(即目标)和背景的分割阈值记作T,属于前景的像素点数占整幅图像的比例记为ω0,其平均灰度μ0;背景像素点数占整幅图像的比例为ω1,其平均灰度为μ1。图像的总平均灰度记为μ,类间方差记为g。

  &nbs

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值