一、说明
受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)是一种基于能量模型的人工神经网络。它只有一个隐层,将输入层和隐层中的每个神经元互相连接,但不同层的神经元之间没有连接。RBM是一种无向的概率图模型,可以用于特征提取、数据降维、协同过滤等任务。它是深度学习中的重要组成部分,可以用于训练多层神经网络如深度信念网络(DBN)和深度自编码器(DAE)。
受限玻尔兹曼机由Geoffrey Hinton发明,是一种可用于降维,分类,回归,协同过滤,特征学习和主题建模的算法。(有关如何使用RBM等