【深度学习】受限玻尔兹曼机 (RBM) 初学者指南

本文是针对初学者的受限玻尔兹曼机(RBM)指南,介绍了RBM的基本概念、结构、学习过程以及在深度学习中的作用,包括其在特征提取和数据重建中的应用。RBM是构建深度信念网络的基石,通过无监督学习自我重建数据,用于预训练以提升后续监督学习的性能。尽管已被更新的模型如生成对抗网络(GAN)和变分自动编码器(VAE)取代,但RBM在理解深度学习机制方面仍具有历史价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、说明

        受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)是一种基于能量模型的人工神经网络。它只有一个隐层,将输入层和隐层中的每个神经元互相连接,但不同层的神经元之间没有连接。RBM是一种无向的概率图模型,可以用于特征提取、数据降维、协同过滤等任务。它是深度学习中的重要组成部分,可以用于训练多层神经网络如深度信念网络(DBN)和深度自编码器(DAE)。

二、定义和结构

        受限玻尔兹曼机由Geoffrey Hinton发明,是一种可用于降维,分类,回归,协同过滤,特征学习和主题建模的算法。(有关如何使用RBM等

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值