用PyTorch代码生成对抗网络(GAN)

本文介绍了生成对抗网络(GAN)的基本原理和实现,通过PyTorch展示了如何在不到50行代码中创建简单的GAN。文中详细阐述了GAN的组件,包括真实数据集R、随机噪声I、生成器G、鉴别器D以及训练循环,并通过一个使用高斯分布和均匀分布的示例,解释了GAN如何进行无监督学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、说明

        2014年,蒙特利尔大学的伊恩·古德费罗(Ian Goodfellow)和他的同事发表了一篇令人惊叹的论文,向世界介绍了GANs生成对抗网络。通过计算图和博弈论的创新组合,他们表明,如果有足够的建模能力,相互竞争的两个模型将能够通过普通的旧反向传播进行共同训练。

二、原理和实现

        这些模型扮演着两个不同的(字面意思是对抗的)角色。给定一些真实的数据集R,G是生成器,试图创建看起来像真实数据的假数据,而D鉴别器,从真实集或G获取数据并标记差异。 Goodfellow的比喻(这是一个很好的比喻)是,G就像一群伪造者,试图将真实的画作与他们的作品相匹配,而D是试图区分的侦探团队。(除了在这种情况下,伪造者G永远看不到原始数据——只能看到D的判断。他们就像盲目的伪造者。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值