【基础理论】隐马尔可夫模型及其算法

52 篇文章 ¥19.90 ¥99.00
本文详细介绍了隐马尔可夫模型(HMM)的基础理论,包括马尔可夫过程、HMM的基本结构、维特比算法、鲍姆-韦尔奇算法以及HMM在生物序列分析、时间序列分析和语音识别等领域的应用。HMM具有简单训练、性能良好等优点,但也存在表示复杂性、参数评估困难等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、说明

        根据L.R Rabiner等人[1]的说法,隐马尔可夫模型是一个双重嵌入的随机过程,其潜在的随机过程是不可观察的(它是隐藏的),但只能通过另一组产生观察序列的随机过程来观察。

        基本上,隐马尔可夫模型 (HMM) 是观察一系列排放,但不知道模型生成排放所经历的状态序列的模型。我们分析隐马尔可夫模型,以从观察到的数据中恢复状态序列。听起来很混乱吧...

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值