一、说明
拉普拉斯分布,也称为双指数分布,是一种概率分布,在统计学中经常用于对不对称数据进行建模。它以法国数学家皮埃尔-西蒙·拉普拉斯 (Pierre-Simon Laplace) 的名字命名,他在 19 世纪初首次引入了它。
二、拉普拉斯分布的特征
对称和不对称:虽然拉普拉斯分布在其均值周围对称,但它与正态分布的不同之处在于它具有较重的尾部。这意味着它允许更有效地对具有异常值或极值的数据进行建模。
概率密度函数 (PDF):拉普拉斯分布的概率密度函数由下式给出:
μ 是位置参数,用于确定分布的中心。
b 是 scale 参数,用于控制分布的散布或宽度。
意味 着:
拉普拉斯分布的均值 (μ) 由 location 参数给出。对于参数为 μ 和 b 的拉普拉斯分布,均值为 μ。
方差:
拉普拉斯分布的方差是尺度参数 (b) 的函数。计算公式为:
标准差:
拉普拉斯分布的标准差 (σ) 是方差的平方根:
三、示例
假设我们有一个参数为 mu = 0 且 b = 1 的拉普拉斯分布。然后
平均值 (μ) = 0
方差 = 2 × 1² = 2
标准差 (σ) = √2 ×1 ≈ 1.414
Python 中的示例
1. 具有不同μ的拉普拉斯分布
下面的第一个代码是一个 Python 脚本,它说明了具有不同 μ 值(位置参数)的拉普拉斯分布。
import numpy as np
import matplotlib.pyplot as plt
# Define the Laplacian distribution function
def laplacian_pdf(x, mu, b):
return (1 / (2 * b)) * np.exp(-np.abs(x - mu) / b)
# Values of the location parameter 'mu'
mu_values = [-2, 0, 2]
b = 1 # Fixed scale parameter
# Create a range of x values
x = np.linspace(-10, 10, 1000)
# Plot the Laplacian distributions for varying mu
plt.figure(figsize=(12, 6))
for mu in mu_values:
y = laplacian_pdf(x, mu, b)
plt.plot(x, y, label=f'μ = {mu}')
plt.title('Laplacian Distribution with Varying μ')
plt.xlabel('x')
plt.ylabel('Probability Density')
plt.legend()
plt.grid(True)
plt.show()
这是上述代码的输出:
laplacian_pdf 函数计算mu_values中每个 μ 值的概率密度。
2. 具有变化 b 的拉普拉斯分布
下面的第二段代码是一个 Python 脚本,它说明了具有不同 b (scale 参数)值的拉普拉斯分布。
import numpy as np
import matplotlib.pyplot as plt
# Define the Laplacian distribution function
def laplacian_pdf(x, mu, b):
return (1 / (2 * b)) * np.exp(-np.abs(x - mu) / b)
# Values of the scale parameter 'b'
b_values = [0.5, 1, 2]
mu = 0 # Fixed location parameter
# Create a range of x values
x = np.linspace(-10, 10, 1000)
# Plot the Laplacian distributions for varying b
plt.figure(figsize=(12, 6))
for b in b_values:
y = laplacian_pdf(x, mu, b)
plt.plot(x, y, label=f'b = {b}, σ = {np.sqrt(2)*b:.2f}')
plt.title('Laplacian Distribution with Varying b')
plt.xlabel('x')
plt.ylabel('Probability Density')
plt.legend()
plt.grid(True)
plt.show()
这是上述代码的输出:
图 1. 变化 b 的拉普拉斯分布(尺度参数)
此脚本绘制刻度参数 b 的不同值的拉普拉斯分布,固定位置参数 μ = 0
该函数计算 中每个 b 值的概率密度。laplacian_pdfb_values
问题:为什么拉普拉斯分布具有尖锐的峰值和沉重的尾部?
拉普拉斯分布具有尖锐的峰值和沉重的尾部,因为它的概率密度函数随着与平均值的绝对距离呈指数下降,导致与多项式衰减的分布(例如正态分布)相比,尾部的衰减速度较慢。
四、对密度函数的解释
公式解释:
拉普拉斯分布的概率密度函数 (PDF) 由下式给出:
在这个公式中:
第 29 节,我介绍了另一个称为拉普拉斯分布的连续概率分布。在 ML 系列的第 30 节 — 联合分布、边际分布和条件分布中,我将介绍多个随机变量的概念及其用法。