主要目的
- 过滤“不合规”数据
- 格式转换和规整
- 根据后续的统计需求,过滤分离出各种不同主题的基础数据
实现方式
开发一个mr程序WeblogPreProcess:
public class WeblogPreProcess {
static class WeblogPreProcessMapper extends Mapper<LongWritable, Text, Text, NullWritable> {
Text k = new Text();
NullWritable v = NullWritable.get();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
WebLogBean webLogBean = WebLogParser.parser(line);
// WebLogBean productWebLog = WebLogParser.parser2(line);
// WebLogBean bbsWebLog = WebLogParser.parser3(line);
// WebLogBean cuxiaoBean = WebLogParser.parser4(line);
if (!webLogBean.isValid())
return;
k.set(webLogBean.toString());
context.write(k, v);
// k.set(productWebLog);
// context.write(k, v);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(WeblogPreProcess.class);
job.setMapperClass(WeblogPreProcessMapper.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}
}
运行mr对数据进行预处理
hadoop jar weblog.jar cn.itcast.bigdata.hive.mr.WeblogPreProcess /weblog/input /weblog/preout
点击流模型数据梳理
由于大量的指标统计从点击流模型中更容易得出,所以在预处理阶段,可以使用mr程序来生成点击流模型的数据。
1.点击流模型pageviews表
Pageviews表模型数据生成
hadoop jar weblogpreprocess.jar \
cn.itcast.bigdata.hive.mr.ClickStreamThree \
/user/hive/warehouse/dw_click.db/test_ods_weblog_origin/datestr=2013-09-20/ /test-click/pageviews/
表结构:
2.点击流模型visit信息表
注:“一次访问”=“N次连续请求”
直接从原始数据中用hql语法得出每个人的“次”访问信息比较困难,可先用mapreduce程序分析原始数据得出“次”信息数据,然后再用hql进行更多维度统计
用MR程序从pageviews数据中,梳理出每一次visit的起止时间、页面信息。
hadoop jar weblogpreprocess.jar cn.itcast.bigdata.hive.mr.ClickStreamVisit /weblog/sessionout /weblog/visitout
然后,在hive仓库中建点击流visit模型表
drop table if exist click_stream_visit;
create table click_stream_visit(
session string,
remote_addr string,
inTime string,
outTime string,
inPage string,
outPage string,
referal string,
pageVisits int)
partitioned by (datestr string);
然后,将MR运算得到的visit数据导入visit模型表
load data inpath '/weblog/visitout' into table click_stream_visit partition(datestr='2013-09-18');