目录
0. 相关文章链接
1. 创建Array数组
import numpy as np
demo_array = np.array([[1,2,3],[4,5,6]])
demo_array
array([[1, 2, 3],
[4, 5, 6]])
2. 基本数值计算
2.1. numpy中的函数
# 使用 numpy 中的函数进行数值计算
print(demo_array)
print("==================")
print(np.sum(demo_array))
print(np.max(demo_array))
print(np.min(demo_array))
[[1 2 3]
[4 5 6]]
==================
21
6
1
2.2. 数组中的函数
# 直接使用数组的函数进行数值计算
print(demo_array)
print("==================")
print(demo_array.sum())
print(demo_array.max())
print(demo_array.min())
[[1 2 3]
[4 5 6]]
==================
21
6
1
3. 指定维度进行计算
3.1. numpy中的函数
# 指定要进行的操作是沿着什么轴(维度)
# 会根据 shape 中的维度来统计,以二维数组举例,元组的第一位是有多少行(横轴),第二位是有多少列(竖轴)
# 如果指定根据横轴(axis=0)来计算,那计算方式为将同一个竖轴的元素进行聚合(即横轴上有多少个元素,那返回的数组就有多少元素)
# 如果指定根据竖轴(axis=1)来计算,那计算方式为将同一个横轴的元素进行聚合(即竖轴上有多少个元素,那返回的数组就有多少元素)
# 如果axis=-1,即取shape返回的元组中的最后那个
print(demo_array)
print("==================")
print(np.ndim(demo_array))
print(np.shape(demo_array))
print("==================")
print(np.sum(demo_array,axis=0))
print(np.max(demo_array,axis=0))
print(np.min(demo_array,axis=0))
print("==================")
print(np.sum(demo_array,axis=1))
print(np.max(demo_array,axis=1))
print(np.min(demo_array,axis=1))
print("==================")
print(np.sum(demo_array,axis=-1))
print(np.max(demo_array,axis=-1))
print(np.min(demo_array,axis=-1))
[[1 2 3]
[4 5 6]]
==================
2
(2, 3)
==================
[5 7 9]
[4 5 6]
[1 2 3]
==================
[ 6 15]
[3 6]
[1 4]
==================
[ 6 15]
[3 6]
[1 4]
3.2. 数组中的函数
# 跟上述类似,只是使用的是数组中的数值计算方法
print(demo_array)
print("==================")
print(demo_array.ndim)
print(demo_array.shape)
print("==================")
print(demo_array.sum(axis = 0))
print(demo_array.max(axis = 0))
print(demo_array.min(axis = 0))
print("==================")
print(demo_array.sum(axis=1))
print(demo_array.max(axis=1))
print(demo_array.min(axis=1))
print("==================")
print(demo_array.sum(axis=-1))
print(demo_array.max(axis=-1))
print(demo_array.min(axis=-1))
[[1 2 3]
[4 5 6]]
==================
2
(2, 3)
==================
[5 7 9]
[4 5 6]
[1 2 3]
==================
[ 6 15]
[3 6]
[1 4]
==================
[ 6 15]
[3 6]
[1 4]
4. 复杂计算
4.1. 统计乘机
# 求选中范围内数值的乘积
print(demo_array)
print("==================")
print(demo_array.ndim)
print(demo_array.shape)
print("==================")
print(demo_array.prod())
print(demo_array.prod(axis = 0))
print(demo_array.prod(axis = 1))
[[1 2 3]
[4 5 6]]
==================
2
(2, 3)
==================
720
[ 4 10 18]
[ 6 120]
4.2. 获取对应值的索引位置
# 求出对应值的索引位置(多维数值的索引是所有元素放入一起进行计算的)
print(demo_array)
print("==================")
print(demo_array.ndim)
print(demo_array.shape)
print("==================")
print(demo_array.argmin())
print(demo_array.argmin(axis = 0))
print(demo_array.argmin(axis = 1))
print("==================")
print(demo_array.argmax())
print(demo_array.argmax(axis = 0))
print(demo_array.argmax(axis = 1))
[[1 2 3]
[4 5 6]]
==================
2
(2, 3)
==================
0
[0 0 0]
[0 0]
==================
5
[1 1 1]
[2 2]
4.3. 求平均值
# 求平均值
print(demo_array)
print("==================")
print(demo_array.ndim)
print(demo_array.shape)
print("==================")
print(demo_array.sum())
print(demo_array.size)
print(demo_array.mean())
print("==================")
print(demo_array.sum(axis = 0))
print(np.size(demo_array, axis = 0))
print(demo_array.mean(axis = 0))
[[1 2 3]
[4 5 6]]
==================
2
(2, 3)
==================
21
6
3.5
==================
[5 7 9]
2
[2.5 3.5 4.5]
4.4. 求标准差
# 求标准差
print(demo_array)
print("==================")
print(demo_array.ndim)
print(demo_array.shape)
print("==================")
print(demo_array.std())
print(demo_array.std(axis = 0))
print(demo_array.std(axis = 1))
print(demo_array.std(axis = -1))
[[1 2 3]
[4 5 6]]
==================
2
(2, 3)
==================
1.707825127659933
[1.5 1.5 1.5]
[0.81649658 0.81649658]
[0.81649658 0.81649658]
4.5. 求方差
# 求方差
print(demo_array)
print("==================")
print(demo_array.ndim)
print(demo_array.shape)
print("==================")
print(demo_array.var())
print(demo_array.var(axis = 0))
print(demo_array.var(axis = 1))
[[1 2 3]
[4 5 6]]
==================
2
(2, 3)
==================
2.9166666666666665
[2.25 2.25 2.25]
[0.66666667 0.66666667]
4.6. 取界限值
# 界限值,将该数组中超出该界限值的元素强制赋值成最小和最大值
demo_array.clip(2,5)
array([[2, 2, 3],
[4, 5, 5]])
4.7. 取整
demo_array = np.array([1.2,3.56,6.41])
print(demo_array)
# 四舍五入取整,不保留小数
print(demo_array.round())
# 四舍五入,保留一位小数
print(demo_array.round(decimals=1))
[1.2 3.56 6.41]
[1. 4. 6.]
[1.2 3.6 6.4]
注:其他Python相关系列文章链接由此进 -> Python文章汇总