题目
给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。
你可以认为每种硬币的数量是无限的。
示例 1:
输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1
示例 2:
输入:coins = [2], amount = 3
输出:-1
示例 3:
输入:coins = [1], amount = 0
输出:0
提示:
1 <= coins.length <= 12
1 <= coins[i] <= 231 - 1
0 <= amount <= 104
思路
首先,可以看一个动态规划非常典型的问题:70.爬楼梯
动态规划其实就是分解问题、记录子问题避免穷举所有的情况
首先,我们需要找到状态变量:
- 组成金额 i 所需最少的硬币数量:dp(i)
- 假设在计算 dp(i) 之前,我们已经计算出 dp(0)到dp(i−1) 的答案
其次,便是构建状态转移方程:根据子问题之间的关系,建立递推公式(关键步骤)。
- 定义变量:
- i(金额)
- j(代表的是第 j 枚硬币的面值,可以先假设这第 j 枚 是最后的那一个硬币的面额,所以可以看做是所有提供的面额)
- dp[i - j] 便表示剩余金额的最优解,然后
+1 将当前硬币的消耗纳入总计数
-
dp(i) 为前面能转移过来的状态的最小值加上枚举的硬币数量 1
-
加1的操作是为了,将当前的硬币计入,也就是对硬币数量的做累计
比如 :coins = [1, 2, 5], amount = 11
dp(1)=min(dp(1−1) +1, dp(1−2)+1, dp(1−5)+1) 加1说明当前是一次计数
dp(2)=min(dp(2−1) +1 ,dp(2−2)+1, dp(2−5) +1) 加1说明是在之前的基础上做累计每次拿硬币的操作必须被明确计数
。想象拿硬币就像往钱包里放实体硬币:- 每次放硬币的动作 必须被计数,否则最终你会不知道用了多少枚;
- 动态规划里的 +1,就是手动记录你放硬币的动作
-
dp(i)
等于dp(0)+1、dp(1)+1、...、dp(i-1)+1的最小值
然后,初始化边界条件:明确初始值等
- 当 i==0 时无法用硬币组成,为 0 。
- 当 i<0 时,忽略 dp(i)
- 初始化值: dp = [0, ∞, ∞, ∞, ∞, ∞] (∞ 用 amount+1表示)
数组中有元素的值如果大于amount+1,则说明当前获取的值是非法组合(因为初始化时,默认除了第一个元素的值是0,剩下的都按最大的组合去计算,也就是amount+1)
- 没有找到组合的情况:如果 dp[amount] 仍然大于等于 amount + 1,说明无法凑成该金额,返回 -1
通过上面的+1操作可以知道
最后,确定计算顺序,从上面的分析可以发现,我们应该使用 自底向上(迭代) 去填充每一个值
算法
class Solution {
public int coinChange(int[] coins, int amount) {
int[] dp = new int[amount+1];
for(int i = 0; i < amount + 1; ++i) {
dp[i] = amount + 1;
}
dp[0] = 0;
for (int i=1; i<=amount; i++) {
for (int j : coins) {
if (i >= j) {
dp[i] = Math.min(dp[i], dp[i-j] + 1);
}
}
}
int res = dp[amount] > amount ? -1 : dp[amount] ;
return res;
}
}