(动态规划)322.零钱兑换

题目

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

示例 1:
输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1

示例 2:
输入:coins = [2], amount = 3
输出:-1

示例 3:
输入:coins = [1], amount = 0
输出:0

提示:
1 <= coins.length <= 12
1 <= coins[i] <= 231 - 1
0 <= amount <= 104

思路

首先,可以看一个动态规划非常典型的问题:70.爬楼梯

动态规划其实就是分解问题、记录子问题避免穷举所有的情况

首先,我们需要找到状态变量:

  • 组成金额 i 所需最少的硬币数量:dp(i)
  • 假设在计算 dp(i) 之前,我们已经计算出 dp(0)到dp(i−1) 的答案

其次,便是构建状态转移方程:根据子问题之间的关系,建立递推公式(关键步骤)。

  • 定义变量:
    • i(金额)
    • j(代表的是第 j 枚硬币的面值,可以先假设这第 j 枚 是最后的那一个硬币的面额,所以可以看做是所有提供的面额)
  • dp[i - j] 便表示剩余金额的最优解,然后 +1 将当前硬币的消耗纳入总计数
    • dp(i) 为前面能转移过来的状态的最小值加上枚举的硬币数量 1

    • 加1的操作是为了,将当前的硬币计入,也就是对硬币数量的做累计

      比如 :coins = [1, 2, 5], amount = 11
      dp(1)=min(dp(1−1) +1, dp(1−2)+1, dp(1−5)+1) 加1说明当前是一次计数
      dp(2)=min(dp(2−1) +1 ,dp(2−2)+1, dp(2−5) +1) 加1说明是在之前的基础上做累计

      每次拿硬币的操作必须被明确计数。想象拿硬币就像往钱包里放实体硬币:

      • 每次放硬币的动作 必须被计数,否则最终你会不知道用了多少枚;
      • 动态规划里的 +1,就是手动记录你放硬币的动作
  • dp(i) 等于 dp(0)+1、dp(1)+1、...、dp(i-1)+1的最小值

然后,初始化边界条件:明确初始值等

  • 当 i==0 时无法用硬币组成,为 0 。
  • 当 i<0 时,忽略 dp(i)
  • 初始化值: dp = [0, ∞, ∞, ∞, ∞, ∞] (∞ 用 amount+1表示)

    数组中有元素的值如果大于amount+1,则说明当前获取的值是非法组合(因为初始化时,默认除了第一个元素的值是0,剩下的都按最大的组合去计算,也就是amount+1)

  • 没有找到组合的情况:如果 dp[amount] 仍然大于等于 amount + 1,说明无法凑成该金额,返回 -1

    通过上面的+1操作可以知道

最后,确定计算顺序,从上面的分析可以发现,我们应该使用 自底向上(迭代) 去填充每一个值

算法

class Solution {
    public int coinChange(int[] coins, int amount) {
        int[] dp = new int[amount+1];
        for(int i = 0; i < amount + 1; ++i) {
            dp[i] = amount + 1;
        }
        
        dp[0] = 0;
        for (int i=1; i<=amount; i++) {
            for (int j : coins) {
                if (i >= j) {
                    dp[i] = Math.min(dp[i], dp[i-j]  + 1);
                }
            }
        }
        int res = dp[amount] > amount  ? -1 : dp[amount] ;
        return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

?abc!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值