题目
给定一个包含红色、白色和蓝色、共 n 个元素的数组 nums ,原地 对它们进行排序,使得相同颜色的元素相邻,并按照红色、白色、蓝色顺序排列。
在计算机科学中,一个原地算法(in-place algorithm)是一种使用小的,固定数量的额外之空间来转换资料的算法。当算法执行时,输入的资料通常会被要输出的部分覆盖掉。不是原地算法有时候称为非原地(not-in-place)或不得其所(out-of-place)。
我们使用整数 0、 1 和 2 分别表示红色、白色和蓝色。
必须在不使用库内置的 sort 函数的情况下解决这个问题。
示例 1:
输入:nums = [2,0,2,1,1,0]
输出:[0,0,1,1,2,2]
示例 2:
输入:nums = [2,0,1]
输出:[0,1,2]
提示:
n == nums.length
1 <= n <= 300
nums[i] 为 0、1 或 2
进阶:你能想出一个仅使用常数空间的一趟扫描算法吗?
思路
首先,分解(Divide):划分三个区域
- 可以将整个过程划分为 p0(此区域全是0)和p2(此区域全是2),
- 中间的则全是1了
其次,解决(Conquer):从左向右遍历,设当前遍历到的位置为 i,对应的元素为 nums[i]
- 如何得出p0区域的值:如果找到了 0,那么将其与 nums[p0] 进行交换,并将 p0 向后移动一个位置
- 如何得出p2区域的值:如果找到了 2,当我们找到 2 时,我们需要不断地将其与nums[p2] 进行交换,直到最新的nums[i]不为2,并将 p2 向前移动一个位置
- p2的位置肯定是大于等于当前位置 i (因为p2是区域最大的)
- 如果交换后的nums[i]值不等于,那么便需要一直交换(因为上一次交换后的最先nums[i]的值 可能是0,也可能是2,也可能是1)
最后,合并(Combine):由于是在当前这个数组中直接操作的,所以便没有合并这个操作(在交换过程中便已经合并了)
算法
class Solution {
public void sortColors(int[] nums) {
int p0 = 0, p2 = nums.length-1;
for (int i=p0; i<=p2; ++i) {
while(p2>=i && nums[i]==2) {
int temp = nums[i];
nums[i] = nums[p2];
nums[p2] = temp;
p2--;
}
if(nums[i]==0) {
int temp = nums[i];
nums[i] = nums[p0];
nums[p0] = temp;
p0++;
}
}
}
}