(双指针)11. 盛最多水的容器

题目

给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。

找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

返回容器可以储存的最大水量。

说明:你不能倾斜容器。

示例 1:

在这里插入图片描述
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。

示例 2:

输入:height = [1,1]
输出:1

提示:

n == height.length
2 <= n <= 105
0 <= height[i] <= 104

思路

我的思路如下:可以实现,但是会超时,下面这个使用了两次循环

  • 首先,初始化指针:left=right=0

  • 其次,定义‌移动逻辑:一起从左向右移动

    • 左指针:等右指针走完整个数组后,再加1
    • 右指针:一直+1,待左指针+1后,其恢复到当前加1后的左指针位置
  • 最后,确定‌终止条件:左指针等于数组长度

由于上面的思路中,使用的双指针是同向指针‌,导致超时,那么这里我们改为 相向指针‌

  • 首先,初始化指针:left=0,right=n
  • 其次,定义‌移动逻辑:一起向中间移动,到底要不要移动取决与两个指针对应的元素的值是更小还是更大
    • 左指针:左指针 大于 右指针 则 左指针不移动,右指针移动,此时最大值比较在右指针
    • 右指针:左指针 小于 右指针 则 右指针不移动,左指针移动,此时最大值比较在左指针
  • 最后,确定‌终止条件:左指针大于等于右指针

算法

class Solution {
    public int maxArea(int[] height) {
        int left = 0, right = height.length - 1;
        int max = 0;
        while (left < right) {
            if (height[left] > height[right]) {
                max = Math.max(max, (right - left) * height[right]);
                right -= 1;
            } else {
                max = Math.max(max, (right - left) * height[left]);
                left += 1;
            }
        }
        return max;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

?abc!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值