题目
给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。
找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
说明:你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1]
输出:1
提示:
n == height.length
2 <= n <= 105
0 <= height[i] <= 104
思路
我的思路如下:可以实现,但是会超时,下面这个使用了两次循环
-
首先,初始化指针:left=right=0 -
其次,定义移动逻辑:一起从左向右移动左指针:等右指针走完整个数组后,再加1右指针:一直+1,待左指针+1后,其恢复到当前加1后的左指针位置
-
最后,确定终止条件:左指针等于数组长度
由于上面的思路中,使用的双指针是同向指针,导致超时,那么这里我们改为 相向指针
- 首先,初始化指针:left=0,right=n
- 其次,定义移动逻辑:一起向中间移动,到底要不要移动取决与两个指针对应的元素的值是更小还是更大
- 左指针:左指针 大于 右指针 则 左指针不移动,右指针移动,此时最大值比较在右指针
- 右指针:左指针 小于 右指针 则 右指针不移动,左指针移动,此时最大值比较在左指针
- 最后,确定终止条件:左指针大于等于右指针
算法
class Solution {
public int maxArea(int[] height) {
int left = 0, right = height.length - 1;
int max = 0;
while (left < right) {
if (height[left] > height[right]) {
max = Math.max(max, (right - left) * height[right]);
right -= 1;
} else {
max = Math.max(max, (right - left) * height[left]);
left += 1;
}
}
return max;
}
}