[LetCode-1438] 绝对差不超过限制的最长连续子数组

博客围绕LeetCode 1438题展开,该题要求返回整数数组中满足任意两元素绝对差小于等于限制值的最长连续子数组长度。介绍了顺序扫描的解题思路,还提及恐怖测试用例,并给出绝对值大小判断、外层循环结束条件等局部优化方法,指出需这些优化避免超时。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目 - letcode1438

难度 - 中等
给你一个整数数组 nums ,和一个表示限制的整数 limit,请你返回最长连续子数组的长度,该子数组中的任意两个元素之间的绝对差必须小于或者等于 limit 。

如果不存在满足条件的子数组,则返回 0 。

  • 示例 1
输入:nums = [8,2,4,7], limit = 4
输出:2 
解释:所有子数组如下:
[8] 最大绝对差 |8-8| = 0 <= 4.
[8,2] 最大绝对差 |8-2| = 6 > 4. 
[8,2,4] 最大绝对差 |8-2| = 6 > 4.
[8,2,4,7] 最大绝对差 |8-2| = 6 > 4.
[2] 最大绝对差 |2-2| = 0 <= 4.
[2,4] 最大绝对差 |2-4| = 2 <= 4.
[2,4,7] 最大绝对差 |2-7| = 5 > 4.
[4] 最大绝对差 |4-4| = 0 <= 4.
[4,7] 最大绝对差 |4-7| = 3 <= 4.
[7] 最大绝对差 |7-7| = 0 <= 4. 
因此,满足题意的最长子数组的长度为 2 。
  • 示例 2
输入:nums = [10,1,2,4,7,2], limit = 5
输出:4 
解释:满足题意的最长子数组是 [2,4,7,2],其最大绝对差 |2-7| = 5 <= 5 。
  • 示例 3:
输入:nums = [4,2,2,2,4,4,2,2], limit = 0
输出:3

审题操作

  • 题目中, 要求的是获取最大值最小值.
  • 题目要求输出的结果是数字的连续长度, 所以不要错误的把绝对值差值直接输出. 我就犯了这个错误.

思路1

顺序扫描
  • 先比较(0-1) (0-2) (0-3) 选择满足的条件.
  • 然后缩短头结点范围(1-2) (1-3)
  • 不断缩小. 直到数字个数为1.

不难写出如下代码:

class Solution {
    // 实际上是求最大值和最小值
    // 注意审题: 最大是求的长度
    public int longestSubarray(int[] nums, int limit) {
        int lastOkLimitLength = 0;
        for(int i=0; i<nums.length; i++){
            // 头结点 从i开始计算
            int max = nums[i], min = nums[i];
            for(int j=i;j<nums.length;j++){
                // 最大值和最小值都从头开始计算
                if(nums[j]>max){max = nums[j];}
                else if(nums[j]<min){min=nums[j];}
                      // 比较
                int limitNum = Math.abs(max-min);
                int limitLength = j-i+1;
                if(limitLength > lastOkLimitLength && limitNum <= limit ){
                	    lastOkLimitLength = limitLength;
                }   
            }
        }
        return lastOkLimitLength;
    }
}
# 这边错误的把绝对值当长度进行输出了. 这是一个错误的情况.

恐怖的测试用例

  • case 1 - 大概2000多数字
[7386080,9043369,566116,155607,2192513,5102709,8009203,8124311,9220099,588704,7572203,4133378,3288454,1209376,224215,7213885,2408989,70926,953383,8985909,4537104,5409806,1128621,3708522,50534,9108260,2259019,1611400,5863523,3355077,4658980,8074627,2922137,7764681,2408538,8959208,5315886,2714416,6616752,...]
6466408
  • case 2 - 相同数字1 - 大概4000多数字
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1...]
10

局部优化

  • 1 绝对值大小判断优化
    我们发现. limit最大-最小相关. 只有当最大/最小变化的时候才会出现变化.

    • 当某一次变化时, 不满足<limit条件. 那么后续的数字也就无需判断了.
    • 最大/最小变化时. 需要重新判断.
  • 2 外层循环结束条件
    因为, 我们寻找的是最大的长度. 所以当index=i时,如果满足length-i的最大长度. 表示整个长度都符合. 那么后续的操作也就无需进行判断.

  • 3 注意数字相同的情况 - Case2

#具体优化操作算法
# 注意点1 - 优化
	outerJ: 
			for (int j = i; j < nums.length; j++) {
				// 优化点2 - 有数字变化再进行比较
				flag = false;
				// 最大值和最小值都从头开始计算
				if (nums[j] > max) {
					max = nums[j];
					flag = true;
				} else if (nums[j] < min) {
					min = nums[j];
					flag = true;
				}

				if (flag) {
					// 优化点1
					// 比较
					int limitNum = Math.abs(max - min);
					// int limitLength = j-i+1;
					if (limitNum <= limit) {
						// if(limitLength > lastOkLimitLength) {
						// }
						length++;
					} else {
						break outerJ;
					}
				} else {
					length++;
				}
	}

# 注意点 2 - 优化
if(lastOkLimitLength >= ((nums.length-i+1)-1)) {
     break outerI;
}

思路2

略. 感觉一定有什么比O(N^N)时间复杂度高的算法. 有时间再继续探索吧.


结论

可以看到. 这个题目不是特别的难. 获取判断最大最小值, 随后获取差值. 但是其中的2个测试用例想要不超时. 还是需要如上的3个优化操作的.

在这里插入图片描述
提交记录惨不忍睹. 汗.


Reference

[1] letcode-1438
[2] https://github.com/SeanYanxml/letcode-all

### 关于 LeetCode 上最长公共子数组问题的解法 在解决 **LeetCode 最长公共子数组** 问题时,通常会采用动态规划的方法来实现高效的解决方案。以下是详细的分析: #### 动态规划的核心思想 对于两个数组 `nums1` `nums2`,可以通过二维动态规划表 `dp[i][j]` 来表示以 `nums1[i-1]` 结尾以 `nums2[j-1]` 结尾的最长公共子数组的长度[^5]。 如果当前元素相等 (`nums1[i-1] == nums2[j-1]`),则有如下状态转移关系: ```plaintext dp[i][j] = dp[i-1][j-1] + 1 ``` 如果相等,则无法延续之前的公共子数组,因此设置为零: ```plaintext dp[i][j] = 0 ``` 最终结果即为整个 `dp` 表中的最大值。 #### 初始化与边界条件 为了确保计算过程无误,在初始化阶段需注意以下几点: - 当任意一方为空时(如 `i=0` 或者 `j=0`),对应的 `dp[0][j]` `dp[i][0]` 应设为 0。 #### 时间复杂度与空间优化 该方法的时间复杂度为 O(m * n),其中 m n 分别代表输入数组 `nums1` `nums2` 的长度。由于每次更新仅依赖前一行的状态据,可进一步将空间复杂度降低至 O(n)。 下面是基于上述理论的具体 Python 实现代码: ```python def findLength(nums1, nums2): m, n = len(nums1), len(nums2) dp = [[0]*(n+1) for _ in range(2)] # 使用滚动数组节省空间 res = 0 for i in range(1, m+1): for j in range(1, n+1): if nums1[i-1] == nums2[j-1]: dp[i%2][j] = dp[(i-1)%2][j-1]+1 res = max(res, dp[i%2][j]) else: dp[i%2][j]=0 return res ``` 此版本利用了滚动数组技术减少了内存消耗。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值