假如有一排房子,共 n 个,每个房子可以被粉刷成红色、蓝色或者绿色这三种颜色中的一种,你需要粉刷所有的房子并且使其相邻的两个房子颜色不能相同。
当然,因为市场上不同颜色油漆的价格不同,所以房子粉刷成不同颜色的花费成本也是不同的。每个房子粉刷成不同颜色的花费是以一个 n x 3 的正整数矩阵 costs 来表示的。
例如,costs[0][0] 表示第 0 号房子粉刷成红色的成本花费;costs[1][2] 表示第 1 号房子粉刷成绿色的花费,以此类推。
请计算出粉刷完所有房子最少的花费成本。
示例 1:
输入: costs = [[17,2,17],[16,16,5],[14,3,19]]
输出: 10
解释: 将 0 号房子粉刷成蓝色,1 号房子粉刷成绿色,2 号房子粉刷成蓝色。
最少花费: 2 + 5 + 3 = 10。
示例 2:
输入: costs = [[7,6,2]]
输出: 2
提示:
costs.length == n
costs[i].length == 3
1 <= n <= 100
1 <= costs[i][j] <= 20
动态规划
常数3用来枚举状态以简化问题,状态比较复杂,就多开辟空间记录状态简化问题
class Solution:
def minCost(self, costs: List[List[int]]) -> int:
# 红-0 蓝-1 绿-2
# dp[i][j] 表示第 i 个房子刷成 j 颜色时,第i个房子以及其之前的房子刷完最少的花费成本
# dp[i][j] = min(dp[i-1][(j+1)%3], dp[i-1][(j-1+3)%3]) + cost[i][j]
m, n = len(costs), 3
dp = [[sys.maxsize] * n for _ in range(m)]
dp[0] = [*costs[0]]
for i in range(1, m):
for j in range(n):
# 此处通过模运算获取了另外两种颜色,避免了if判断,多种颜色可以写成循环
dp[i][j] = (
min(dp[i - 1][(j + 1) % 3], dp[i - 1][(j - 1 + 3) % 3])
+ costs[i][j]
)
return min(dp[m - 1])
# O(m) O(m)
空间优化
class Solution:
def minCost(self, costs: List[List[int]]) -> int:
# 红-0 蓝-1 绿-2
# dp[i][j] 表示第 i 个房子刷成 j 颜色时,第i个房子以及其之前的房子刷完最少的花费成本
# dp[i][j] = min(dp[i-1][(j+1)%3], dp[i-1][(j-1+3)%3]) + cost[i][j]
# 由于上面dp[i]的所有结果仅依赖于dp[i-1]的所有情况,所以空间复杂度可以优化为常数
m, n = len(costs), 3
dp = [*costs[0]]
for i in range(1, m):
next_dp = [0, 0, 0] # next_dp = [0] * n
for j in range(n):
# 此处通过模运算获取了另外两种颜色,避免了if判断,多种颜色可以写成循环
next_dp[j] = min(dp[(j + 1) % 3], dp[(j - 1 + 3) % 3]) + costs[i][j]
dp = next_dp
return min(dp)
# O(m) O(1)
265. 粉刷房子 II 同样解法