Python GPU 加速数据科学 | 计算距离矩阵在用 cuPy 时快了约 100 倍

本文介绍了如何使用CuPy的cupyx.scipy.spatial.distance方法,通过GPU加速计算距离矩阵,相比scipy的方法在处理100维65000个样本的情况下速度提升了约100倍,且减少了内存消耗。文章详细阐述了环境配置、计算过程以及性能对比,展示了GPU在大规模数据处理中的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CSDN 叶庭云https://yetingyun.blog.csdn.net/


一、环境配置

利用 cuPy 的 cupyx.scipy.spatial.distance 方法计算距离矩阵时,这个 distance 模块使用 pylibraft 作为后端,因此还需要安装好 pylibraft package 才行,可以直接从 Conda 安装,链接为:https://anaconda.org/rapidsai/pylibraft

也可以用 pip install 安装 pylibraft-cu11cupy-cuda11x(注意:我

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值