推荐系统中的GNN,图神经网络

本文探讨了session-based方法如GRU4REC在推荐系统中的局限性,即难以建模item间的复杂转移关系。为解决此问题,GNN类推荐系统研究逐渐活跃,通过引入图神经网络思想显著提升了推荐系统的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简述

session-based 方法(如 GRU4REC)表现活跃,比 i2i 好用,但被认为其不能建模 item 之间的复杂转移关系,所以GNN类的Rec论文活跃, 通过引入GNN思想可以取得性能提升。

参考

  1. own blog, SR-GNN,图网络召回
  2. MGNN-SPred
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值