概率论是研究随机现象规律性的一门学科
客观世界中存在着两类现象,一类是确定性现象,另一类是随机现象:
1.在给定条件下,某一结果一定会出现的现象,称为确定性现象。
2.在一定条件下,有多种可能的结果且无法预知哪一个结果将会出现的现象叫做随机现象.
随机现象的两个显著特点:
1.对于随机现象进行一次或少数几次观察,其可能结果中出现哪一个是具有偶然性。
2.大量观察时,会发现所出现的结果具有一定的规律性。
把依据大量观察得到的规律性称为统计规律性.概率论就是发现并研究蕴含在随机现象里的规律性中的数量关系的学科。
试验
这样的试验叫做一次随机试验(简称试验),记为E(experiment):
①可重复性:试验可以在相同的条件下重复进行;
②可观察性:试验的所有可能的结果是已知的,并且不止一个;
③不确定性:每次试验出现这些可能结果中的一个,但在一次试验前,不能肯定出现哪一个结果.
样本空间
试验的全部可能结果是在试验前就明确的;或者虽不能确切知道试验的全部可能结果,但可知道它不超过某个范围.一般地,把随机试验的每一种可能的结果称为一个样本点,称所有样本点的全体为该试验的样本空间,记为S(或Ω)。样本空间的元素是由试验目的所确定的.
在随机试验中,人们除了关心试验的结果本身外,往往还关心试验的结果是否具备某一指定的可观察的特征.在概率论中,把具有某一可观察特征的随机试验的结果称为事件.事件可分为以下三类.
随机事件:指在试验中可能发生也可能不发生的事件.随机事件通常用字母A、B、C等表示.
必然事件:指在每次试验中都必然发生的事件.通常用S(或Ω)表示.样本空间Ω作为它自己的一个子集是一个特殊的事件,无论试验结果是什么,它总是一定会发生的,所以,我们又称样本空间Ω为必然事件.
不可能事件:指在任何一次试验中都不可能发生的事件.用空集符号Ø表示.因为无论出现什么试验结果,它都不会在空集中,即不可能事件一定不会发生.显然,必然事件和不可能事件都是确定性事件,今后为研究问题方便,把必然事件和不可能事件都当成特殊的随机事件,并将随机事件简称为事件.
样本空间S(samples)是随机试验的所有可能结果(样本点)的集合,每一个样本点是该集合的一个元素.一个事件是由具有该事件所要求的特征的那些可能结果所构成的,所以,一个事件是对应于S中具有相应特征的样本点所构成的集合,它是S的一个子集合.于是,任何一个事件都可以用S的某个子集来表示.
我们需要特别注意事件的自然语言表示和数学表示。不得不承认的是字母语言在基础科学表示上比象形文字更加有优势。没有那么多模糊性,描述事物更加精确。
一般地,在一个随机试验得到结果后,如果事件A(A是Ω的子集)中包含这个结果,我们就称在这次随机试验中事件A发生了,否则事件A没有发生.
从数学的角度看,与试验有关的每一件“事情”均可描述成样本空间Ω的一个子集,反之亦然.在一次试验中,倘若我们得到一个结果a∈Ω,那么,如果a∈A,则我们就称事件A发生了,否则就说事件A没有发生.
我们称仅含一个样本点的事件为基本事件;含有两个或两个以上样本点的事件为复合事件.
事件的关系和运算的含义
同一试验的不同事件之间往往存在着一定的联系,在实际问题中,随机事件又往往有简单和复杂之分.在研究随机事件发生的规律性时,需要了解事件间的关系,以及事件的合成与分解的数学结构.为此,对事件之间的各种关系及运算有必要作明确规定.
由于随机事件是基本空间的子集,下面就按照集合论中集合的关系和运算给出事件的关系和运算的含义.
(1)包含关系 如果事件A发生必然导致事件B发生,则称事件A包含于事件B,记作A⊂B,或称事件B包含事件A,记作B⊃A,即A中的基本事件都在B中.
(2)相等关系 如果事件A和事件B互相包含,即A⊂B,B⊂A则称A与B相等,记作A=B,即A与B中的基本事件完全相同.
(3)和事件 “事件A与事件B至少有一个发生”的事件称为事件A与事件B的和事件(又叫并事件),记作A+B(或A∪B).它是由属于A或B的所有基本事件构成的.在某次试验中事件A∪B发生,则意味着在该次试验中事件A与事件B至少有一个发生.显然A⊂A∪B,B⊂A∪B.
和事件可以推广到更多的事件,
表示“事件A1,A2,…,An中至少有一个发生”这一事件.
(4)积事件 “事件A与事件B同时发生”的事件称为事件A与事件B的积事件(又叫交事件),记作AB(或A∩B).它是由既属于A又属于B的所有基本事件组成的.在某次试验中事件A∩B发生则意味着在该次试验中事件A与B同时发生.
积事件也可以推广到更多的事件上去,即
表示“事件A1,A2,…,An同时发生”.
(5)互斥事件 在一次试验中,不能同时发生的两个事件A与B称为互斥事件(或叫互不相容事件).事件A与B互斥,说明A与B没有相同的基本事件,即A∩B=Ø,这也是两个事件A与B互斥的充要条件.
6)差事件 “事件A发生而事件B不发生”的事件为A与B的差事件,记作A-B.它是由属于A但不属于B的基本事件构成的.
从上面的讨论可以看出,事件之间的各种关系、运算与集合论中集合之间的相应关系、运算是一致的.因此,事件之间的关系和运算可以用直观示意图表示,如图1-1-1.
图1-1-1 事件之间的关系和运算示意图