改进YOLOv5系列:4.YOLOv5_最新MobileOne结构换Backbone修改,超轻量型架构,移动端仅需1ms推理!苹果最新移动端高效主干网络

本文介绍了如何将MobileOne结构应用于YOLOv5,以实现轻量化的目标检测模型。通过修改YOLOv5的配置文件和源代码,结合MobileOneBlock进行训练,最终获得在移动端只需1ms推理时间的高效模型。内容包括MobileOne的理论背景、模型细节和实验效果,并提供了详细的配置及训练步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本专栏包含大量的首发原创改进方式🚀, 所有文章都是全网首发内容。🌟

降低改进难度,改进点包含最新最全的Backbone部分、Neck部分、Head部分、注意力机制部分、自注意力机制部分等完整教程 🚀

💡本篇文章基于 YOLOv5、YOLOv7、YOLOv7-Tiny 进行 最新MobileOne结构换Backbone修改,苹果最新移动端高效主干网络 改进。
🔥🔥🔥YOLO系列 + MobileOne结构 结合应用 为 CSDN芒果汁没有芒果 首发更新博文
专栏读者有问题可以私信博主,看到了就会回复.



改进参数效果

训练模型的数据(参考)

Model Summary: 827 layers, 11090109 parameters, 11090109 gradients
评论 62
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值