YOLOv5改进CFPNet系列:最新论文|首发结合最新Centralized Feature Pyramid集中特征金字塔,通过COCO数据集验证强势涨点

本文介绍了将Centralized Feature Pyramid(CFP)应用于YOLOv5的目标检测中,通过在YOLOv5中集成CFP,实现在COCO数据集上的性能提升。CFP利用轻量级MLP捕捉全局依赖,并用视觉中心机制关注图像的角落区域,以提高特征表示的全面性和区分性。实验结果证实,CFP在YOLOv5和YOLOX上都能带来一致的性能提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Centralized Feature Pyramid论文理论部分 + YOLOv5代码改进

视觉特征金字塔在广泛的应用中显示了其有效性和效率的优越性。然而,现有方法过分关注层间特征交互,而忽略了层内特征规则,经验证明这是有益的。尽管一些方法试图在注意力机制或视觉转换器的帮助下学习紧凑的层内特征表示,但它们忽略了对密集预测任务很重要的被忽略的角落区域。为了解决这个问题,在本文中,我们提出了一种用于对象检测的集中特征金字塔(CFP),它基于全局显式的集中特征规则。具体来说,我们首先提出了一种空间显式视觉中心方案,其中使用轻量级 MLP 来捕获全局远程依赖关系,并使用并行可学习的视觉中心机制来捕获输入图像的局部角落区域。基于此,我们提出了一种自顶向下的通用特征金字塔的全局集中调控,其中从最深的层内特征获得

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值