- 💡该教程包含大量的原创首发改进方式, 所有文章都是原创首发改进内容🚀
降低改进难度,改进点包含最新最全的Backbone
部分、Neck
部分、Head
部分、注意力机制
部分、自注意力机制
部分等完整教程🚀 - 💡本篇文章基于 YOLOv5 最新集中特征金字塔Centralized Feature Pyramid 高效涨点改进,代码直接运行🚀
- 重点:
有读者已经反映该教程提供的配置在自有数据集上有效涨点!!!
同时COCO也能涨点 - 专栏读者有问题可以私信博主,看到了就会回复.
一、Centralized Feature Pyramid论文理论部分 + YOLOv5代码改进
视觉特征金字塔在广泛的应用中显示了其有效性和效率的优越性。然而,现有方法过分关注层间特征交互,而忽略了层内特征规则,经验证明这是有益的。尽管一些方法试图在注意力机制或视觉转换器的帮助下学习紧凑的层内特征表示,但它们忽略了对密集预测任务很重要的被忽略的角落区域。为了解决这个问题,在本文中,我们提出了一种用于对象检测的集中特征金字塔(CFP),它基于全局显式的集中特征规则。具体来说,我们首先提出了一种空间显式视觉中心方案,其中使用轻量级 MLP 来捕获全局远程依赖关系,并使用并行可学习的视觉中心机制来捕获输入图像的局部角落区域。基于此,我们提出了一种自顶向下的通用特征金字塔的全局集中调控,其中从最深的层内特征获得